29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section 6.6 Moments and Centers of Mass 491<br />

42.<br />

V 2 A V 2 a<br />

4a<br />

a<br />

2 a (3 4)<br />

3 2 3<br />

3<br />

43. V 2 A (2 ) (area of the region) (distance from the centroid to the line y x a ). We must find the<br />

distance from 0, 4a to y x a . The line containing the centroid and perpendicular to y x a has slope<br />

3<br />

1 and contains the point 0,<br />

4a . This line is y x 4a<br />

3<br />

3 . The intersection of y x a and y x 4a<br />

is<br />

3<br />

the point<br />

4a 3a ,<br />

4a 3a . Thus, the distance from the centroid to the line y x a is<br />

6 6<br />

2 2 2<br />

3<br />

2(4 3 ) 2(4 3 ) 2 (4 3 )<br />

4a 3a 4a 4a 3a a a V (2 )<br />

a a a a<br />

6 3 6 6 6 6 2 6<br />

44. The line perpendicular to y x a and passing through the centroid 0,<br />

2a has equation y x 2 a<br />

. The<br />

a a a a a<br />

2 2<br />

intersection of the two perpendicular lines occurs when x a x 2 x 2 x 2<br />

2a a<br />

2<br />

y . Thus the distance from the centroid to the line y x a is<br />

a(2 )<br />

2<br />

2a a<br />

2<br />

2 2<br />

2<br />

0<br />

a a a<br />

2 2 2<br />

a(2 ) 2<br />

2<br />

. Therefore, by the Theorem of Pappus the surface area is S 2 ( a) 2 a (2 ).<br />

45. If we revolve the region about the y-axis:<br />

of Pappus:<br />

1 2<br />

1<br />

a<br />

3 2 3<br />

1 1 2<br />

r a, h b A ab, V a b,<br />

and .<br />

2 3<br />

a b 2 x ab x ; If we revolve the region about the x-axis:<br />

r b, h a A 1 ab,<br />

1 2<br />

,<br />

2 3<br />

1 2<br />

2<br />

1<br />

b a<br />

,<br />

b<br />

3 2 3 3 3<br />

V b a and y . By the Theorem of Pappus:<br />

b a y ab y is the center<br />

of mass.<br />

x By the Theorem<br />

46. Let O(0, 0), P( a, c ), and Q( a, b ) be the vertices of the given triangle. If we revolve the region about the<br />

x -axis: Let R be the point R( a , 0). The volume is given by the volume of the outer cone, radius RP c,<br />

minus the volume of the inner cone, radius RQ b , thus<br />

1 2 1 2 1 2 2<br />

3 3 3<br />

V c a b a a c b , the area is<br />

given by the area of triangle OPR minus area of triangle OQR,<br />

A 1 ac 1 ab 1 a<br />

2 2 2 ( c b ), and y . By<br />

2 2<br />

the Theorem of Pappus:<br />

1 a c b 2 y 1 a( c b) y c b<br />

; If we revolve the region about the<br />

3 2 3<br />

y -axis: Let S and T be the points S(0, c ) and T (0, b ), respectively. Then the volume is the volume of the<br />

cylinder with radius OR a and height RP c , minus the sum of the volumes of the cone with radius<br />

SP a and height OS c and the portion of the cylinder with height OT b and radius TQ a<br />

with a cone of height OT b and radius TQ a removed. Thus<br />

2 1 2 2 1 2<br />

V a c a c a b a b<br />

3 3<br />

A ac ab 1<br />

same as before,<br />

1 1<br />

2 2<br />

2 2<br />

1<br />

2 a( a b)<br />

a ( a b) 2 x a( c b)<br />

x<br />

3 2 3( c b)<br />

2 2 2 2 2 2<br />

3 3 3<br />

a c a b a ( a b ). The area of the triangle is the<br />

2 a( c b ), and x . By the Theorem of Pappus:<br />

2 a( a b)<br />

,<br />

c b<br />

3( c b) 2<br />

is the center of mass.<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!