29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1048 Chapter 14 Partial Derivatives<br />

36. M (6 z) i 2yj xk and g 2xi 2yj 2zk so that M g (6 z) i 2yj xk<br />

(2xi 2yj 2 zk ) 6 z 2 x , 2y 2 y , x 2z<br />

1 or y 0.<br />

CASE 1: 1 6 z 2x and x 2z 6 z 2( 2 z) z 2 and x 4. Then<br />

2 2 2<br />

( 4) y 2 36 0 y 4.<br />

CASE 2: y 0, 6 z 2 x , and<br />

36 z 6 or z 3. Now<br />

x 2 2 2 2 2<br />

2 z x 6 2 x 6 6 0<br />

2z<br />

z x 2z<br />

z z x z z z<br />

2 2<br />

z 6 x 0 x 0; z 3 x 27 x 3 3.<br />

Therefore we have the points 3 3, 0, 3 , (0, 0, 6), and ( 4, 4, 2). Then M 3 3, 0, 3 27 3 60<br />

106.8, M 3 3, 0, 3 60 27 3 13.2, M (0, 0, 6) 60, and M ( 4, 4, 2) 12 M ( 4, 4, 2).<br />

Therefore, the weakest field is at ( 4, 4, 2).<br />

37. Let g 1 ( x, y, z) 2x y 0 and g2 ( x, y, z) y z 0 g1 2 i j, g2<br />

j k , and f 2xi 2j 2zk<br />

so that f g1 g2 2xi 2j 2 zk (2 i j) ( j k) 2xi 2j 2zk 2 i ( ) j k<br />

2x 2 , 2 , and 2 z x . Then 2 2z x x 2z 2 so that 2x<br />

y 0<br />

2( 2z 2) y 0 4z 4 y 0. This equation coupled with y z 0 implies z 4 and 4<br />

3<br />

y 3 .<br />

2 2<br />

Then x 2 so that 2 , 4 , 4 is the point that gives the maximum value f 2 , 4 , 4 2 2 4 4<br />

3<br />

3 3 3<br />

3 3 3 3 3 3<br />

4<br />

3 .<br />

38. Let g 1 ( x, y, z) x 2y 3z 6 0 and g2 ( x, y, z) x 3y 9z 9 0 g1<br />

i 2j 3 k,<br />

g2 i 3j 9 k , and f 2xi 2yj 2zk so that f g1 g2 2xi 2yj 2zk<br />

( i 2j 3 k) ( i 3j 9 k ) 2 x , 2y<br />

2 3 , and 2z 3 9 . Then 0 x 2y 3z<br />

6<br />

1 ( ) (2 3 ) 9 27 6 7 17 6; 0 x 3y 9z<br />

9<br />

2 2 2<br />

1 ( ) (3 9 ) 27 81 9 34 91 18. Solving these two equations for and gives<br />

2 2 2 2<br />

240<br />

59 and 78 81 2 3 123<br />

3 9<br />

x , y , and z 9<br />

59 2 59 2 59<br />

2 59 . The minimum value is<br />

21,771<br />

f 81 , 123 , 9 369 . (Note that there is no maximum value of f subject to the constraints because at<br />

59 59 59 2<br />

59 59<br />

least one of the variables x, y, or z can be made arbitrary and assume a value as large as we please.)<br />

2 2 2<br />

39. Let f ( x, y, z)<br />

x y z be the square of the distance from the origin. We want to minimize f ( x, y, z)<br />

subject to the constraints g 1 ( x, y, z) y 2z 12 0 and g 2 ( x, y, z) x y 6 0. Thus<br />

f 2xi 2yj 2 zk, g1<br />

j 2 k , and g2<br />

i j so that f g1 g2 2 x , 2 y , and<br />

2z 2 . Then 0 y 2z<br />

12 2 12 5 1 12 5 24;<br />

2 2 2 2<br />

0 x y 6 6 1 6 2 12. Solving these two equations for and gives<br />

2 2 2 2<br />

4 and 4 x 2, y 4, and z 4. The point (2, 4, 4) on the line of intersection is<br />

2<br />

2<br />

closest to the origin. (There is no maximum distance from the origin since points on the line can be arbitrarily<br />

far away.)<br />

40. The maximum value is f 2 , 4 , 4 4 from Exercise 33 above.<br />

3 3 3 3<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!