09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Halbleiterphysik Montag<br />

diated by the waveguide underneath. The coupling leads to a strong<br />

and spectrally narrow reduction of the absorption within the plasmon<br />

spectrum [1]. We can measure the dispersion of these 2-dimensional<br />

metallic photonic crystals. Changing the structure to 1-dimensional gold<br />

nanowires allows even stronger coupling. Polaritons with a normal mode<br />

splitting of more than 250 meV are formed [2]. Furthermore, we demonstrate<br />

control of the dephasing times in the particle plasmons and quan-<br />

tum beats in the 20 fs range by varying the geometric arrangement [3]. A<br />

number of possible applications of these novel systems will be presented.<br />

This work was financially supported by DFG and BMBF.<br />

[1] S. Linden et al., Phys. Rev. Lett. 86, 4688 (2001).<br />

[2] A. Christ et al., Phys. Rev. Lett. 91, 183901 (2003).<br />

[3] K. Schubert et al., phys. stat. sol. (c) 0, 1412 (2003).<br />

HL 3 Quantenpunkte und -drähte: Herstellung und Charakterisierung<br />

Zeit: Montag 10:15–13:15 Raum: H17<br />

HL 3.1 Mo 10:15 H17<br />

Mix-and-Match Prozess zur Herstellung verzweigter elektronischer<br />

Wellenleiter unter Verwendung von elektronenstrahlsensitivem<br />

Calixaren und konventionellem Fotolack — •Michael<br />

Knop 1 , Mirja Richter 1 , Ulrich Wieser 1 , Ulrich Kunze 1 , Dirk<br />

Reuter 2 und Andreas D. Wieck 2 — 1 Lehrstuhl für Werkstoffe<br />

und Nanoelektronik, Ruhr-Universität Bochum, D-44780 Bochum —<br />

2 Lehrstuhl für Angewandte Festk örperphysik, Ruhr-Universität Bochum,<br />

D-44780 Bochum<br />

Es wird ein Verfahren zur Herstellung nanoskaliger, modulationsdotierter<br />

GaAs/Al1−xGaxAs- Feldeffektstrukturen beschrieben.<br />

Im ersten Prozessschritt wird eine Wellenleiterstruktur durch<br />

Niederenergie-Elektronenstrahlithographie im Negativresist Calixaren<br />

definiert. Zur Minimierung des Proximity-Effektes verwenden wir eine<br />

Beschleunigungsspannung von 2 kV. Im zweiten Prozessschritt wird<br />

durch UV-Lithographie die Mesa- und Kontaktstruktur des Transistors<br />

in einem konventionellen Fotolack erzeugt. Die entstandene Kombination<br />

aus Calixaren und Fotolack wird in einem einzigen nasschemischen<br />

Ätzschritt in die Heterostruktur übertragen. Auf diese Weise lassen sich<br />

minimale Strukturabmessungen von etwa 20 nm erzeugen. Die Wellenleiter<br />

werden durch Transportmessungen charakterisiert.<br />

HL 3.2 Mo 10:30 H17<br />

Threedimensional Kinetic Monte Carlo Simulation of Formation<br />

of Microstructures in Liquid Droplets — •Michael Block 1 ,<br />

Roland Kunert 1 , Eckehard Schöll 1 , Torsten Boeck 2 , and<br />

Thomas Teubner 2 — 1 Institut für Theoretische Physik, Technische<br />

Universität Berlin, Hardenbergstr. 36, 10623 Berlin — 2 Institut für<br />

Kristallzüchtung Berlin, Max-Born-Str. 2, 12489 Berlin<br />

We simulate the epitaxy of Indium droplets on a glass surface and<br />

the crystallization of Silicon inside these droplets utilizing kinetic Monte<br />

Carlo methods. The influence of the growth temperature, the flux of<br />

incoming particles, the surface coverage, and in particular an energy parameter<br />

(comparable to the surface binding energy) upon the morphology<br />

of growth is analysed. According to the experimental conditions of crystallization,<br />

a temperature gradient and diffusion in spherical droplets is<br />

included. The simulations result in the formation of pyramidal structures<br />

in agreement with the experiment. The dependence of their shape and<br />

the conditions of formation on the growth parameters is investigated in<br />

detail.<br />

HL 3.3 Mo 10:45 H17<br />

NANOENGINEERING OF LATERAL STRAIN-<br />

MODULATION IN QUANTUM WELL HETEROSTRUC-<br />

TURES — •Jörg Grenzer 1 , S.A. Grigorian 1 , S. Feranchuk 1 ,<br />

U. Pietsch 1 , U. Zeimer 2 , J. Fricke 2 , H. Kissel 2 , A. Knauer<br />

2 , and M. Weyers 2 — 1 University of Potsdam, Institute of Physics,<br />

Am Neuen Palais 10, 14469 Potsdam, Germany — 2 Ferdinand-Braun-<br />

Institut fuer Hoechstfrequenztechnik, Albert-Einstein-Str. 11, 12489,<br />

Berlin, Germany<br />

We have developed a method to design a lateral band-gap modulation<br />

in a single quantum well heterostructure (SQW). The lateral strain variation<br />

is induced by patterning of a stressor layer grown on top of the SQW<br />

which itself is not patterned. The 3D strain distribution is calculated using<br />

linear elasticity theory implemented trough a finite element method<br />

(FEM). The local variation of the band-gap energy is derived from the<br />

strain distribution with the help of the deformation potential approach.<br />

For a given vertical layer structure we optimized the geometrical parameters<br />

to provide a nanostructure with maximum lateral band-gap<br />

variation.<br />

Experimentally such a structure was realized by etching a surface grat-<br />

ing into a InGaP stressor layer grown on top of a InGaAs-SQW. The 3D<br />

strain distribution and the band-gap variation are probed by X-ray grazing<br />

incidence diffraction and photoluminescence (PL), respectively. We<br />

found a splitting of the PL line of about 50 meV as predicted by FEM.<br />

A planarization of the grating structure during a second epitaxy reduced<br />

the induced band-gap variation. However, for the planar structure we<br />

found still a splitting of larger than 22 meV.<br />

HL 3.4 Mo 11:00 H17<br />

Shape transition during growth of InAs/GaAs quantum dots<br />

— •Peter Kratzer 1 and Quincy Liu 2 — 1 Fritz-Haber-Institut der<br />

Max-Planck-Gesellschaft, Berlin — 2 Hahn-Meitner-Institut, Berlin<br />

Recent STM studies have revealed that free-standing MBE-grown InAs<br />

quantum dots on GaAs(001) appear in at least two varieties, as flat structures<br />

mainly bounded by (137) facets [1], or also as larger objects with<br />

an aspect ratio > 0.3, showing a variety of bounding facets [2]. We investigate<br />

theoretically the energetics associated with these island shapes,<br />

employing a hybrid approach [3]: surface energies and surface stress are<br />

calculated using density functional theory, taking into account the specific<br />

atomic structure. The bulk elastic energy in both the islands and the substrate<br />

is calculated within continuum elasticity theory, using the finiteelement<br />

method. We find that the flat island shape with (137) facets is<br />

energetically preferable for small island volumes, while the steeper shape<br />

becomes energetically lower for larger islands. Tensile surface stress and<br />

the associated lowering of the surface energy on strained facets plays a<br />

decisive role in this cross-over. We discuss implications of our findings for<br />

the growth kinetics of InAs islands, in particular for the two-dimensional<br />

growth mode of new atomic layers on the strained side facets of the island.<br />

[1] J. Marquez et al., Appl. Phys. Lett. 78, (2001) 2309<br />

[2] G. Costantini et al., Appl. Phys. Lett. 82, (2003) 3194<br />

[3] E. Pehlke et al., Appl. Phys. A 65, (1997) 525<br />

HL 3.5 Mo 11:15 H17<br />

InAs quantum dots grown on the GaAs(2, 5, 11)A and B surfaces:<br />

a STM and PL study — •Yevgeniy Temko, Takayuki<br />

Suzuki, Ming Chun Xu und Karl Jacobi — Fritz-Haber-Institut<br />

der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin<br />

InAs quantum dots (QDs) were grown by molecular beam epitaxy on<br />

GaAs(2, 5, 11)A [1] and B surfaces. By atomically resolved in situ scanning<br />

tunnelling microscopy we determine the main bounding facets on<br />

the QDs. On both substrates the QDs are faceted by 110-, 111-surfaces<br />

and a rounded region formed by vicinal (001) stacking. The latter becomes<br />

faceted on large islands. There is no mirror symmetry on the QDs<br />

in agreement with substrate symmetry. Besides this similarity there are<br />

also differences: On the (2, 5, 11)A substrate the QDs shape is elongated<br />

whereas those on the GaAs(-2,-5,-11)B are rather rounded similar to the<br />

InAs QDs grown on GaAs(113)A and B [2,3,4]. The size distribution of<br />

the islands on the B face is much sharper than on the A face which is also<br />

confirmed by the low-temperature photoluminescence measurements.<br />

[1] L.Geelhaar, J.Marquez, P.Kratzer, and K.Jacobi, Phys. Rev. Lett. 86,<br />

3815 (2001)<br />

[2] T.Suzuki, Y.Temko, and K.Jacobi, Appl. Phys. Lett. 80, 4744 (2002)<br />

[3] Y.Temko, T.Suzuki, and K.Jacobi, Appl. Phys. Lett. 82, 2142 (2003)<br />

[4] Y.Temko, T.Suzuki, M.C.Xu, and K.Jacobi, Appl. Phys. Lett. 83,<br />

3680 (2003)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!