09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Halbleiterphysik Mittwoch<br />

HL 27.10 Mi 17:30 H15<br />

Zeitaufgelöste Photolumineszenz an GaInN/GaN-Strukturen:<br />

Laserqualität contra Quantenausbeute — •C. Netzel, F. Hitzel,<br />

S. Lahmann, U. Rossow und A. Hangleiter — Institut für Technische<br />

Physik, Technische Universität Braunschweig, D-38106 Braunschweig<br />

GaN-basierte Halbleiterstrukturen, ob LEDs oder Laserdioden, mit<br />

Emissionswellenlängen von grün bis ins UV, werden seit einigen Jahren<br />

hergestellt. Trotz der Entwicklungserfolge konnten grundlegende Fragen,<br />

die strahlende und nichtstrahlende Rekombination in dem defektreichen<br />

Materialsystem betreffend, bisher nicht eindeutig geklärt werden.<br />

In dieser Arbeit soll durch Untersuchungen von GaInN/GaN-<br />

Heterostrukturen, die mit MOVPE auf Saphir/SiC gewachsen wurden,<br />

ein tieferer Einblick in die Rekombinationsabläufe gewonnen werden. Es<br />

wurden auf hohe optische Verstärkung optimierte Laserstrukturen mit<br />

zeitaufgelöster Photolumineszenz untersucht und mit auf hohe Quantenausbeute<br />

optimierten MQWs verglichen. Sämtliche Probenreihen zeigen<br />

in der Photolumineszenz neben der erwarteten Linienposition mindestens<br />

eine weitere hochenergetische Emission. Die Ausprägungen der Emissionslinien<br />

sind abhängig vom jeweiligen Optimierungsgrad. Vergleichsmessungen<br />

mittels SNOM (Scanning Nearfield Optical Microscope) deuten<br />

auf eine räumliche Trennung der Emissionen hin. Zeitaufgelöste Messungen<br />

zeigen eine unterschiedliche Zerfallskinetik der Emissionen auf.<br />

Eine Erhöhung der Quantenausbeute scheint mit dem verstärkten Auftreten<br />

der hochenergetischen Emission einherzugehen. Die Laserqualität<br />

wird dabei jedoch verschlechtert.<br />

HL 27.11 Mi 17:45 H15<br />

MOVPE growth of GaN/AlGaN quantum well structures and<br />

its impact on the optical properties — •D. Fuhrmann 1 , M.<br />

Greve 1 , N. Riedel 1 , U. Rossow 1 , G. Ade 2 , P. Hinze 2 , J. Bläsing 3 ,<br />

A. Krost 3 , and A. Hangleiter 1 — 1 TU Braunschweig, Inst. f. Techn.<br />

Phys., 38106 Braunschweig; d.fuhrmann@tu-bs.de — 2 Physikalisch Technische<br />

Bundesanstalt, 38116 Braunschweig — 3 Otto-von-Guericke-Univ.,<br />

Inst. f. Exp. Phys., 39016 Magdeburg<br />

GaN/AlxGa1−xN (x≥20%) quantum well (QW) structures were grown<br />

by MOVPE on sapphire and SiC substrates in order to realize efficient UV<br />

light emitters. It will be shown how growth parameters (substrate, III-<br />

V-ratio, Si-doping, pressure) affect the optical properties, determined by<br />

photoluminescence (PL) spectroscopy. TEM and XRD measurements reveal<br />

smooth surfaces for the upper and lower GaN/AlxGa1−xN-interface.<br />

AFM pictures of GaN QW-structures on sapphire show microholes, which<br />

can be correlated to defects inside the AlGaN buffer layer. In addition,<br />

a PL emission around 3.65 eV arising from these defects is observed,<br />

whereas for structures on SiC both AFM and PL do not show these features.<br />

Varying QW-thickness for QWs on SiC or sapphire yields a nearly<br />

linear shift for the PL peak position with different slopes. It is found<br />

that for short growth times a nucleation phase takes place for QWs on<br />

sapphire which is not seen in the case of SiC substrates. In order to increase<br />

the potential barrier, AlN/GaN MQW structures have been grown<br />

for comparison. Differences between AlxGa1−xN barriers and AlN barriers<br />

arising from a different morphology and structural quality as well as<br />

different electric fields inside the quantum well will be discussed.<br />

HL 27.12 Mi 18:00 H15<br />

Temperature dependence of the built-in electric field strength<br />

in AlGaN/GaN Heterostructures grown on Si(111) — •A.T.<br />

Winzer 1 , R. Goldhahn 1 , G. Gobsch 1 , A. Dadgar 2 , A. Krtschil 2 ,<br />

H. Witte 2 , and A. Krost 2 — 1 Institute of Physics, TU Ilmenau, 98684<br />

Ilmenau — 2 Institute of Experimental Physics, Otto-von-Guericke University<br />

Magdeburg, 39016 Magdeburg<br />

Previous studies of the barrier electric field strength F of AlGaN/GaN<br />

heterostructures grown on sapphire revealed a strong temperature dependence.<br />

This was attributed to the change of piezoelectric polarization<br />

due to the large mismatch of thermal expansion coefficients between the<br />

nitride layers and the sapphire.<br />

Here, we report for the first time on similar studies for AlGaN/GaN<br />

heterostructures on Si(111)-substrate. The samples were grown by<br />

MOCVD with different Al-contents in the top AlGaN layer, utilizing a<br />

thin low temperature AlN interlayer for strain reduction.<br />

Hall and C(V) measurements as well as spatially resolved surface potential<br />

measurements were carried out in order to determine the density<br />

of the 2DEG. In the AlGaN layers, F was determined by analyzing the<br />

Franz-Keldysh-Oscillations in photoreflectance spectroscopy. Their energetic<br />

splittings indicate that F is nearly independent from the temper-<br />

ature, which can be attributed to a constant piezoelectric polarization<br />

and thus to a constant strain state.<br />

This interpretation is corroborated by temperature dependent reflectance<br />

measurements. The results are compared with self-consistent<br />

conduction band calculations.<br />

HL 27.13 Mi 18:15 H15<br />

Silicon doping of heteroepitaxial AlN films grown by MBE —<br />

•Martin Hermann, Florian Furtmayr, Martin Stutzmann, and<br />

Martin Eickhoff — Walter Schottky Institut, Am Coulombwall 3,<br />

85748 Garching<br />

Recently, Si-doped AlN has attracted increasing interest due to its<br />

possible application in wide bandgap semiconductor devices, such as n-<br />

AlN/p-diamond heterojunction diodes. So far, these devices suffer from<br />

a large serial resistance because of the high ionization energy of Si in<br />

AlN. We have investigated Si doping of heteroepitaxial AlN films grown<br />

by plasma assisted molecular beam epitaxy.<br />

The influence of the Si concentration on the structural properties has<br />

been investigated by high resolution X-ray diffraction measurements. The<br />

surface morphology of the AlN:Si samples has been examined by atomic<br />

force microscopy. The dependence of the Si donor activation energy on<br />

the doping concentration was analyzed by temperature dependent conductivity<br />

measurements. Optical absorption measurements were used to<br />

detect the formation of impurity induced defects, especially the by Si<br />

donor, and to examine their influence on the optical properties of AlN:Si.<br />

HL 27.14 Mi 18:30 H15<br />

Verspannungsgradienten in dicken GaN-Schichten auf Silizium<br />

Substrat — •U. Haboeck 1 , A. Hoffmann 1 , C. Thomsen 1 , T. Riemann<br />

2 , F. Bertram 2 , J. Christen 2 , A. Dadgar 2 und A. Krost 2<br />

— 1 Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr.<br />

36, 10623 Berlin, Germany — 2 Institut für Experimentelle<br />

Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2,<br />

39106 Magdeburg, Germany<br />

Die Gitterfehlanpassung sowie die extrem unterschiedlichen thermischen<br />

Ausdehnungskoeffizienten erschweren das Wachstum von Galliumnitrid<br />

(GaN) auf Siliziumsubstrat (Si (111)). Selbst dünne Schichten sind<br />

in der Regel deutlich tensil verspannt und können reissen. Mittels Mikro-<br />

Raman-Spektroskopie und Kathodolumineszenz Mikroskopie haben wir<br />

mehrere dicke GaN/Si-Schichten untersucht. Unsere Experimente belegen<br />

den günstigen Einfluss von eingefügten Aluminiumnitridzwischenschichten<br />

und Siliziumnitridmasken auf die strukturellen und optischen<br />

Eigenschaften von nominell undotierten und Si-dotierten Proben. Ortsaufgelöste<br />

Messungen über die Probenkanten ermöglichen einen Einblick<br />

in die Entwicklung der Verspannung vom Substrat zur Oberfläche hin.<br />

Obwohl die Relaxation in den ca. 6 Mikrometer dicken Schichten sprunghaft<br />

erfolgt, waren die Oberflächen homogen und frei von Rissen.<br />

HL 27.15 Mi 18:45 H15<br />

Electro-optic Effects in Nitride Semiconductors: Investigation<br />

and Application for Characterisation — •S. Shokhovets 1 , G.<br />

Gobsch 1 , O. Ambacher 2 , M. Hermann 3 , and M. Eickhoff 3 —<br />

1 Institute of Physics, TU Ilmenau, PF 100565, 98684 Ilmenau, Germany<br />

— 2 Center for Micro- and Nanotechnologies, TU Ilmenau, PF 100565,<br />

98684 Ilmenau — 3 Walter Schottky Institute, TU Munich, Am Coulombwall<br />

3, 85748 Garching<br />

We report on the results of electroreflectance (ER) and impedancevoltage<br />

(ZV) studies of GaN and AlGaN diodes with a semitransparent<br />

Pt Schottky gate. The data analysis was carried out using the multi-layer<br />

formalism which allows us to consider the electric field inhomogeneity.<br />

The field-dependent contribution of excitons and excitonic continuum<br />

to the dielectric function (a) and the linear electro-optic effect (b) were<br />

identified to be the main mechanisms of the electro-optical response. The<br />

first effect leads to the so-called rotation ER spectra in a region of the<br />

excitonic absorption and reduces to the Franz-Keldysh-like oscillations<br />

above the band gap. The second one is responsible for the electro-optical<br />

response below the band gap. Further, applications for characterisation<br />

(exciton energies and broadening parameters for the zero-field limit, band<br />

bending, concentration of ionised impurities and electric field strength in<br />

the depletion region as a function of the temperature) are presented and<br />

compared with the ZV measurements.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!