09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Halbleiterphysik Mittwoch<br />

2D system. Obviously it is not possible to have a “second quantization<br />

axis of angular momentum” on top of the perpendicular quantization<br />

axis due to HH-LH splitting. We will thus discuss how spin splitting and<br />

spin polarization in quasi 2D HH systems compete with HH-LH splitting.<br />

We will compare the results of calculations and experiments showing the<br />

depopulation of the upper spin subband in quasi 2D HH systems as a<br />

function of an in-plane magnetic field. We will demonstrate theoretically<br />

and experimentally that the shape of the confinement potential greatly<br />

affects the spin subband depopulation field.<br />

HL 29.3 Mi 15:45 H13<br />

Strukturelle und Magnetische Eigenschaften von epitaktischen<br />

NiMnSb-Schichten — •P. Bach 1 , A. Bader 1 , C. Gould 1 , G.<br />

Schmidt 1 , L.W. Molenkamp 1 , R. Urban 2 , G. Woltersdorf 2 und<br />

B. Heinrich 2 — 1 Physikalisches Institut, Experimentelle Physik III,<br />

Universität Würzburg, Am Hubland, 97074 Würzburg — 2 Simon Fraser<br />

University, 8888 University Drive, Burnaby, British Columbia, V5AIS6,<br />

Canada<br />

Halbmetallische Ferromagneten wie die Halb-Heusler-Legierung<br />

NiMnSb, die 100% Spinpolarisation bei Raumtemperatur aufweisen,<br />

sind ideale Kandidaten für Spininjektionsbauelemente.<br />

Es wurden qualitativ hochwertige NiMnSb-Schichten auf<br />

In0.53Ga0.47As/InP mittels MBE gewachsen. Hochauflösende<br />

Röntgendiffraktometrie (HRXRD) zeigt die hervorragende strukturelle<br />

Qualität des NiMnSb und gibt Aufschluss über das Relaxationsverhalten<br />

dieser Schichten.<br />

Die Magnetischen Eigenschaften wurden mit Hilfe von Magnetooptischem<br />

Kerr Effekt (MOKE), Ferromagnetischer Resonanz (FMR) und<br />

SQUID Magnetometrie untersucht. Abhängig von der Schichtdicke wurden<br />

verschiedene uniaxiale und vierfache Anisotropien beobachtet.<br />

HL 29.4 Mi 16:00 H13<br />

Very large Magnetoresistance in ferromagnetic (Ga,Mn)As<br />

wires with Nanoconstrictions — •Christian Rüster, Tatjana<br />

Borzenko, Charles Gould, Georg Schmidt, and Laurens<br />

Molenkamp — Physikalisches Institut, Universität Würzburg, Am<br />

Hubland, D-97074 Würzburg<br />

It was recently pointed out by Flatté and Vignale [APL 78, (2001)<br />

1273] that a very large magnetoresistance should be observable from domain<br />

walls in (Ga,Mn)As. We have now fabricated, using e-beam lithography<br />

and dry etching, (Ga,Mn)As based nanostructures where domain<br />

walls can be pinned by sub-20 nm constrictions. Controlled by shape<br />

anisotropy we can switch the regions on either side of the constriction to<br />

either parallel or antiparallel magnetization. All samples exhibit a positive<br />

magnetoresistance when a domain wall is trapped at the constriction.<br />

We clearly observe the exponential I/V -characteristics predicted by<br />

Flatté and Vignale. For samples in the diffusive transport regime, we find<br />

a magnetoresistance up to 8%, while in samples where, due to depletion<br />

at the constriction, a tunnel barrier is formed, we observe magnetoresistance<br />

up to 2000%. Preliminary data on the manipulation of domain<br />

walls using electrical current is also presented.<br />

HL 29.5 Mi 16:15 H13<br />

Growth and Characterization of GaMnAs on GaAs (001) and<br />

(311)A — •M. Reinwald, U. Wurstbauer, M. Döppe, K. Wagenhuber,<br />

P. Tranitz, W. Wegscheider, and D. Weiss — Institut für<br />

Experimentelle und Angewandte Physik, Universität Regensburg, 93040<br />

Regensburg, Germany<br />

Ga1−xMnxAs-layers with manganese content x of about 5% have been<br />

grown by molecular beam epitaxy on GaAs (001) and (311)A substrates.<br />

SQUID measurements on the as-grown and on annealed samples show<br />

that samples on both growth surfaces are ferromagnetic, but differ both<br />

in the curie temperature and the magnetic anisotropy. Magnetotransport<br />

measurements with in plane magnetic field show a planar hall effect, so<br />

that it is possible to study the angular dependence of the switching fields<br />

by rotating the sample in the field.<br />

Although many GaMnAs samples have been grown, it is still possible<br />

to grow GaAs/AlGaAs-heterostructures with high electron mobilities in<br />

the same growth chamber. PL measurements on these heterostructures<br />

reveal, that no manganese was incorporated into these samples. A second<br />

growth chamber specially designed for highest electron mobilities, allows<br />

the combination of ferromagnetic layers and high electron mobility structures,<br />

to carry out spin injection experiments.<br />

This work is supported by BMBF Verbundprojekt ” Spinelektronik und<br />

Spinoptoelektronik in Halbleitern“<br />

HL 29.6 Mi 16:30 H13<br />

Rashba effect induced localization in quantum networks<br />

— •Dario Bercioux 1 , Michele Governale 2 , Vittorio<br />

Cataudella 1 , and Vincenzo Marigliano Ramaglia 1 —<br />

1 Coherentia-INFM and Dipartimento di Fisica Universitá Federico II<br />

Napoli Italy — 2 NEST-INFM and Scuola Normale Superiore Pisa Italy<br />

Quantum networks are graphs of one-dimensional wires connected at<br />

nodes. It has been shown recently that in a particular two-dimensional<br />

quantum network, the so called T∋, quantum interference due to the<br />

Aharon-Bohm effect and to the topology of the network can induce strong<br />

localization [1,2]. For two-dimensional networks made up of quantum<br />

wires realized in semiconductor heterostructures, spin-orbit coupling due<br />

to the structural inversion asymmetry (Rashba effect[3]) may play an<br />

important role. We study a quantum network extending in only onedimension<br />

(chain of square loops connected at one vertex) made up of<br />

quantum wires with Rashba spin-orbit coupling. This system is a simplified<br />

version of a T∋, and exhibits the same kind of localization when a<br />

magnetic field is applied. We show that the Rashba effect may give rise to<br />

a localization phenomenon similar to the one induced by magnetic flux.<br />

This localization effect can be attributed to the spin precession due to<br />

the Rashba effect. Furthermore, we study the effect of disorder on the<br />

transport properties of this network .<br />

[1] J. Vidal, R. Mosseri and B. Douçot, Phys. Rev. Lett. 81, 5888<br />

(1998). [2] C. Naud et al., Physica E 12, 190 (2001). [3] Yu A. Bychkov<br />

and E.I. Rashba, J. Phys. C: Solid State Phys. 17, 6039 (1984).<br />

HL 29.7 Mi 16:45 H13<br />

Molecular-beam epitaxy of (Zn,Mn)Se on Si(100) for spintronics.<br />

— •T. Slobodskyy, D. Keller, A. Slobodskyy, C. Gould,<br />

P. Grabs, G. Schmidt , and L.W. Molenkamp — Physikalisches Institut,<br />

Universität Würzburg, Am Hubland, 97074 Würzburg, Germany<br />

Experiments on spin injection into silicon are very important for industrial<br />

applications of spintronics devices. Due to the conductance mismatch[1],<br />

diluted magnetic semiconductors like (Zn,Mn)Se are required<br />

for spin injection experiments in the diffusive transport regime.<br />

(Zn,Mn)Se films were grown by molecular beam epitaxy on Si(100)<br />

substrates. A low temperature surface cleaning technique, in combination<br />

with subsequent Arsenic passivation, yields a surface suitable for<br />

II-VI epitaxy. A low temperature growth start involving atomic layer<br />

epitaxy and molecular enhanced epitaxy has been optimized.<br />

The structural properties of the films were determined by high resolution<br />

X-ray diffraction and optical measurements. The surface investigated<br />

using both optical and scanning electron microscopy. SQUID and<br />

magneto-optical measurements show the expected magnetic properties<br />

of the films. Preliminary transport measurements have also been carried<br />

out.<br />

[1] G. Schmidt, L. W. Molenkamp, A. T. Filip, and B. J. van Wees,<br />

Phys. Rev. B. 62, R4790 (2000).<br />

HL 29.8 Mi 17:00 H13<br />

Resonant tunneling diodes with magnetic emitters for spin injection<br />

experiments — •A. Slobodskyy, A. Gröger, C. Gould,<br />

T. Slobodskyy, P. Grabs, G. Schmidt, and L. W. Molenkamp<br />

— Physikalisches Institut der Universität Würzburg EP3, Am Hubland,<br />

D-97074 Würzburg, Germany<br />

All II-VI magnetic resonant tunneling diodes (RTD) were grown by<br />

Molecular Beam Epitaxy (MBE). The emitter of the ZnSe/(Zn,Be)Se<br />

RTD contains 6% manganese, making it suitable for the injection of spinpolarized<br />

electrons at low temperatures and moderate magnetic fields.<br />

Using this type of structure, spin injection into resonant tunneling diodes<br />

(and quantum dots when patterned to sub-micron size) can be studied.<br />

After patterning, the samples were inserted into a He bath cryostat<br />

equipped with a 16 T superconducting magnet. The I/V characteristics<br />

were measured with magnetic field applied either perpendicular to, or<br />

in the plane of the quantum well. The I/V curves of the device show<br />

characteristic resonant tunneling diode behavior. When subjected to an<br />

external magnetic field the resonance shifts in agreement with the Zeeman<br />

splitting that we expect from the DMS layer.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!