09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Dynamik und Statistische Physik Montag<br />

DY 15 Fluids I<br />

Zeit: Montag 14:30–16:15 Raum: H3<br />

DY 15.1 Mo 14:30 H3<br />

Different Modes of Spinodal Dewetting in a Two-Layer system<br />

— •Andrey Pototsky 1 , Michael Betsehorn 1 , Domnic Merkt 1<br />

und Uwe Thiele 2 — 1 Lehrstuhl fuer Theoretische Physik II, BTU Cottbus,<br />

Erich-Weinert Str. 1, D-03046 Cottbus, Germany — 2 MPI komplexer<br />

Systeme, Noethnitzer Str. 38, D-01187, Dresden, Germany<br />

We consider two ultra thin layers of different liquids on a solid substrate.<br />

Using long wave theory coupled evolution equations for the free<br />

liquid-liquid and liquid-gas interfaces are derived taken into account nonretarded<br />

Van der Waals forces. Analisis of their linear and non-linear behavior<br />

shows that, both, varicose and zigzag modes can be unstable and<br />

lead to film rupture at the inner interface or substrate. The results are<br />

exemplified using a Si/PS/PMMA/air system.<br />

DY 15.2 Mo 14:45 H3<br />

Dynamics of self-excited droplet oscillations in electrowetting<br />

— •Jean-Christophe Baret 1,2 , Dagmar Steinhauser 1 , Ralf<br />

Seemann 1 , Stephan Herminghaus 1,3 , and Frieder Mugele 1<br />

— 1 Universitaet Ulm, Abt. Angewandte Physik, D-89069 Ulm —<br />

2 Philips Research, Eindhoven (NL) — 3 Max Planck Institut fuer<br />

Stroemungsforschung, D-37018 Goettingen<br />

Under suitable conditions, liquid droplets in electrowetting experiments<br />

can perform self-excited oscillations, as shown recently in Ref.<br />

1. Here, we present an extension of these previous experiments to higher<br />

and much better defined oscillation frequencies. We deposited droplets<br />

of a conductive liquid (≈ 1 nl) on top of a Si wafer, with an insulation<br />

layer (1 µm SiO2) and a monolayer of octadecyltrichlorosilane. We applied<br />

an AC voltage (10 kHz) between the substrate and a Pt wire that<br />

was immersed into the droplet at a distance d above the surface. Upon<br />

increasing the voltage U from zero to 100 V, the contact angle decreased<br />

from 130 deg to 70 deg. If d was chosen close to the height of the droplet<br />

at zero voltage, the droplet detached from the Pt wire upon increasing<br />

the voltage. Within a certain range of d and U, droplets periodically<br />

jumped on and off the wire. The oscillation frequency varied between 50<br />

Hz and 120 Hz for droplet sizes between 1mm and 0.1mm. Close to the<br />

critical values of d and U, where the oscillations cease, we found chaotic<br />

behavior. Furthermore, we demonstrate microfluidic mixing in oscillating<br />

droplets.<br />

(1) A. Klingner, S. Herminghaus, and F. Mugele, Appl. Phys. Lett. 82,<br />

4187 (2003)<br />

DY 15.3 Mo 15:00 H3<br />

Holes and fingers in vertically vibrated aqueous suspensions.*<br />

— •Florian S. Merkt 1,2 , Robert D. Deegan 1 , Daniel I. Goldman<br />

1 , Erin C. Rericha 1 , and Harry L. Swinney 1 — 1 University of<br />

Texas at Austin — 2 presently at the Fritz-Haber-Institut der MPG<br />

We have observed stable holes in a sinusoidally oscillated 0.5 cm deep<br />

aqueous suspension of cornstarch for accelerations a above 10g and frequencies<br />

of 50-200 Hz. Holes appear only if a finite perturbation is applied<br />

to the layer. They are circular and approximately 0.5 cm wide and can<br />

persist for more than 10 5 oscillation periods. Above a ≈ 17g the rim<br />

of the hole becomes unstable producing finger-like protrusions or hole<br />

division. At even higher accelerations, the hole delocalizes and grows to<br />

cover the entire surface with erratic undulations. We have found similar<br />

behavior in an aqueous suspension of glass microspheres and argue that<br />

shear thickening fluids in general exhibit these patterns.<br />

*Supported by DOE Grant DE-FG03-93ER14312<br />

DY 15.4 Mo 15:15 H3<br />

On the formation of the primary bead in the droplet detachment<br />

process of an elastic liquid — •Christian Wagner 1 ,<br />

Yacine Amarouchene 2 , Daniel Bonn 2 , and Jens Eggers 3 —<br />

1 Experimentalphysik, Universität des Saarlandes, Postfach 151150, 66041<br />

Saarbrücken, Germany — 2 Laboratoire de Physique Statistique, UMR<br />

CNRS 8550, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris<br />

Cedex 05, France — 3 School of Mathematics, University of Bristol, University<br />

Walk Bristol BS8, 1TW United Kingdom<br />

The droplet detachment process of an elastic liquid is characterized<br />

by the suppression of the finite time singularity and appearance of a<br />

cylindrical filament between the droplet and the nozzle. Synchronously<br />

to the appearance of the filament secondary droplets, so called beads<br />

on the string can be observed too. Most reports concern the appearance<br />

of beads at the final stage of the droplet detachment process but under<br />

certain conditions they are to observe from the beginning of the filament<br />

forming process. In this study we present the phase boundaries for these<br />

beads. Their appearance is connected with a transition from a symmetric<br />

to an asymmetric shape of the droplet neck in the Newtonian regime<br />

before the onset of the elastic behavior. This transition is is properly<br />

described with a crossover from the symmetric instability solution of the<br />

pending droplet to a self similar solution for the pinch of behavior of low<br />

viscous Newtonian liquids and the phase boundaries are determined by<br />

the ratio of the elongational rate and the Reynoldsnumber.<br />

DY 15.5 Mo 15:30 H3<br />

Phase-field model for evaporation with convection in two-layer<br />

systems — •Rodica Borcia and Michael Bestehorn — Lehrstuhl<br />

für Theoretische Physik II, Brandenburgische Technische Universität<br />

Cottbus, Erich-Weinert-Straße 1, 03046, Cottbus, Germany<br />

We propose a phase-field model for analyzing the influence of evaporation<br />

phenomenon on Marangoni convection in liquid-vapor systems. The<br />

phase-field model treats the problem continuously (all the system parameters<br />

vary continuously from one medium to another), and avoids interface<br />

conditions. Therefore, evaporation with convection in multi-layers<br />

structures can be discussed in a more natural way. The theoretical description<br />

is based on the Navier-Stokes equation with some extra-terms<br />

responsible for describing Marangoni convection [1], the heat equation<br />

with a supplementary term responsible for describing evaporation phenomena<br />

[2], and the continuity equation. We report on two-dimensional<br />

simulations for both Marangoni instabilities in linear approximation and<br />

we compare the results with the literature.<br />

[1] R. Borcia, M. Bestehorn, Phys. Rev. E 67, 066307 (2003).<br />

[2] R.J. Braun, B.T. Murray, J. Cryst. Growth 174, 41 (1997).<br />

DY 15.6 Mo 15:45 H3<br />

Schwingungsverhalten und innere Strömung bei verdampfenden<br />

Wassertropfen — •Frank Rietz, Wolfgang Jantoß und<br />

Stefan C. Müller — Universität Magdeburg, Fakultät für Naturwissenschaften,<br />

Abteilung Biophysik<br />

Wird eine kleine Menge Wasser auf eine heiße Platte gegeben, so<br />

schwebt der sich bildende Tropfen aufgrund des Leidenfrost-Effekts.<br />

Dies ist jedem bekannt. Dass sich aber unter bestimmten Bedingungen<br />

faszinierende Strukturbildungsphänomene des Wassertropfens beobachten<br />

lassen, entzieht sich der allgemeinen Kenntnis. Es entstehen<br />

nämlich sternförmige Oszillationen, die durch Schwankungen der Oberflächenspannung<br />

und des Temperaturgradienten angeregt werden. Der<br />

Tropfen kann mit bis zu 4 cm Durchmesser in zahlreichen Moden schwingen,<br />

deren Kenngrößen vorgestellt werden sollen. Neben diesen Ergebnissen<br />

liegt das Augenmerk auf die durch Particle Image Velocimetry beobachtbare<br />

Konvektion im Inneren des Tropfens. Die zugrunde liegenden<br />

Mechanismen verleiten zu dem Schluss, die Schwingungen in Zusammenhang<br />

mit der Marangoni-Instabilität zu betrachten.<br />

DY 15.7 Mo 16:00 H3<br />

Dynamics in spatially confined dipolar liquids — •Sabine H.L.<br />

Klapp — Stranski-Laboratorium für Physikalische und Theoretische<br />

Chemie, Sekr. TC 7, Fakultät II, Technische Universität Berlin, Straße<br />

des 17 Juni 124, 10623 Berlin, Germany<br />

Based on Molecular Dynamics simulations we investigate the interplay<br />

between static and dynamic properties of confined films of simple dipolar<br />

fluids, which can be considered as model systems for confined polar<br />

liquids or ferrocolloid films. Previous Monte Carlo studies (1,2) on such<br />

systems have shown that the specific properties of dipolar interactions,<br />

combined with the presence of confining walls, yields interesting orientational<br />

effects such as wall–induced chain formation in the contact layer<br />

and spontaneous global polarization at pressures lower than in the bulk.<br />

Here we discuss the implications of these features on translational and<br />

rotational time correlation functions and on resulting transport coefficients.<br />

1) S. H. L. Klapp and M. Schoen, J. Chem. Phys. 117, 8050 (2002).<br />

2) S. H. L. Klapp and M. Schoen, in press (2003).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!