09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Oberflächenphysik Dienstag<br />

O 20 Oberflächenreaktionen I<br />

Zeit: Dienstag 11:15–13:15 Raum: H45<br />

O 20.1 Di 11:15 H45<br />

Adsorption and Oxidation of NH3 on RuO2(110) — •Yuemin<br />

Wang, Ursula A. Paulus, Karl Jacobi, and Gerhard Ertl —<br />

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-<br />

14195 Berlin<br />

The epitaxially grown RuO2(110) surface was found to exhibit high<br />

catalytic activity for CO oxidation [1, 2]. In the present work the interaction<br />

of NH3 with the stoichiometric and O-enriched RuO2(110) surfaces,<br />

which the latter exposes a weakly bound atomic oxygen species on-top of<br />

the unsaturated Ru atom (Ru-cus), is studied using high-resolution electron<br />

energy-loss spectroscopy (HREELS) and thermal desorption spectroscopy<br />

(TDS). At the stoichiometric RuO2(110) surface we observed<br />

only the molecular adsorption of NH3 on Ru-cus at 85 K, whereas on<br />

the O-enriched surface NH3 oxidation occurs with annealing to higher<br />

temperature. The reaction products depend on the coverage of O-cus.<br />

At low O2 exposures (below 0.3 L) NH3 reacts with O-cus to give rise<br />

to N2 and H2O. With increasing oxygen exposure NO is produced and<br />

becomes the main product at saturation of O-cus. The formation of other<br />

N-containing species such as N2O and NO2 were not observed. Reaction<br />

mechanisms for NH3 oxidation will be discussed in detail. [1] C. Y. Fan,<br />

J. Wang, K. Jacobi, G. Ertl, J. Phys. Chem. B 106, 10058(2002). [2] J.<br />

Wang, C. Y. Fan, K. Jacobi, G. Ertl, Surf. Sci. 481, 113 (2001).<br />

O 20.2 Di 11:30 H45<br />

Austrittsarbeitsänderungen während elektrochemischen Pumpens<br />

von Festelektrolyt/Metall-Systemen am Beispiel YSZ/Pt<br />

— •Tobias Neubrand, Sebastian Günther und Ronald Imbihl<br />

— Institut für Physikalische Chemie und Elektrochemie, Universität<br />

Hannover, Callinstr. 3-3a, 30167 Hannover<br />

Bei der Erklärung des sogenannten NEMCA (Non-faradayic Electrochemical<br />

Modification Catalytic Activity)-Effektes nimmt die durch elektrochemisches<br />

Pumpen hervorgerufene Änderung der Austrittsarbeit eine<br />

entscheidende Rolle ein. Allerdings finden sich hierzu experimentelle und<br />

theoretische Arbeiten mit widersprüchlichen Ergebnissen. Aus diesem<br />

Grund wurden Messungen mit einer Pt-YSZ-Pt Gasreferenzzelle durchgeführt,<br />

bei der Arbeits-, Gegen- und Referenzelektrode durch Aufpinseln<br />

und anschließendem Einsintern einer Pt-Paste aufgebracht wurden. Für<br />

die Arbeitselektrode wurden verschiedene Pt-Pasten (Firma Engelhard<br />

bzw. Demetron) verwendet, die unterschiedliches Verhalten beim elektrochemischen<br />

Pumpen zeigten. Die Änderung der Austrittsarbeit wurde<br />

mittels Kelvin-Sonde und PEEM (Photo Electron Emission Microscopy)<br />

an Luft und unter UHV-Bedingungen untersucht. Die Kombination von<br />

PEEM und Kelvin-Sonde erlaubt es, zwischen elektrostatischen Effekten<br />

und adsorbatbedingter Änderung der Dipolbarriere an einer Oberfläche<br />

zu unterscheiden. Die Ergebnisse zeigen, daß unter Reaktionsbedingungen<br />

der elektrische Kontakt der Pt-Körner zum Teil verloren geht, was<br />

zu elektrostatischen Aufladungen und einer Verfälschung der Austrittsarbeitsmessung<br />

mit einer Kelvin-Sonde führt.<br />

O 20.3 Di 11:45 H45<br />

Adsorption and Interaction of Ethylene on stoichiometric and<br />

oxygen rich RuO2(110) — •Ursula A. Paulus 1 , Yuemin Wang 1 ,<br />

Hans P. Bonzel 2 , Karl Jacobi 1 , and Gerhard Ertl 1 — 1 Fritz-<br />

Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195<br />

Berlin — 2 Forschungszentrum Jülich, ISG3, D-52425 Jülich<br />

The nature of the oxygen species responsible for ethylene (C2H4) oxidation<br />

on Ag particles is still under discussion. Here we prepare stoichiometric<br />

and oxygen rich RuO2(110) surfaces exposing either coordinatively<br />

unsaturated Ru (Ru-cus) and oxygen (O-bridge) atoms or O-bridge<br />

and O-cus atoms. We study the adsorption and interaction of C2H4 on<br />

those surfaces applying high-resolution electron energy loss spectroscopy<br />

(HREELS) and thermal desorption spectroscopy (TDS).<br />

Under the applied conditions (ultra-high vacuum, no continuous reactant<br />

supply) C2H4 adsorbs molecularly on the stoichiometric RuO2(110)<br />

surface at 85 K and desorbs again molecularly at 320 K. Warming up the<br />

sample to 260 K leads to changes in the bond strength. A rearrangement<br />

from π-bonded to σ-bonded is suggested.<br />

On the oxygen rich RuO2(110) surface a complete oxidation of C2H4<br />

to CO2 and water is observed. Warming up the sample between 85 K and<br />

500 K HREEL spectra indicate the presence of several reaction intermediates,<br />

which are discussed here.<br />

[1] J. Wang et al., J. Phys. Chem. B. 106 (2002) 3422.<br />

O 20.4 Di 12:00 H45<br />

CO oxidation at RuO2(110) studied by first-principles kinetic<br />

Monte-Carlo simulations — •Karsten Reuter 1,2 , Daan<br />

Frenkel 2 , and Matthias Scheffler 1 — 1 Fritz-Haber-Institut,<br />

Berlin — 2 AMOLF, Amsterdam<br />

A quantitative modeling of catalytic activity requires a high accuracy<br />

in the description of each of the manifold of involved elementary processes,<br />

as well as a correct statistical mechanics treatment of the interplay<br />

between them. We attempt such a modeling by first-principles kinetic<br />

Monte-Carlo simulations, i.e. using rates derived from density-functional<br />

theory as input. Modeling the CO oxidation over RuO2(110) we obtain<br />

a full (T, pO2 , pCO) turnover frequency diagram, which agrees with available<br />

experimental data. The surface configurations actuating catalysis<br />

are found to be strongly influenced by kinetic effects, most prominently<br />

under gas phase conditions where the system is close to a surface phase<br />

transition. The highest steady-state turnover rates are obtained for the<br />

resulting phase coexistence at the surface, which enables specific reaction<br />

mechanisms that do not operate at other temperature and pressure<br />

conditions including ultra-high vacuum.<br />

O 20.5 Di 12:15 H45<br />

Depolarisation of the rotational alignment. — •M. Rutkowski<br />

and H. Zacharias — Physikalisches Institut, Westfälische Wilhelm-<br />

Universität, Wilhelm-Klemm Str. 10, 48149 Münster, Germany<br />

Up to now experimental investigations of the rotational alignment of<br />

molecules both in the gas phase and desorbing from surfaces are performed<br />

under the assumption that the rotational alignment is nonvarying<br />

with time. However, early theoretical investigations for atoms [1]<br />

predict a strong time dependence, caused by the interaction of the nuclear<br />

spin with the electronic angular momentum. In this talk a corresponding<br />

model for the rotational angular momentum of molecules is applied to<br />

D2, H2 and NO molecules. The calculations of the rotational alignment<br />

of these molecules yield strong periodic oscillations, which significantly<br />

change both in amplitude and periodicity with the rotational quantum<br />

number.<br />

[1] U. Fano, J.H. Macek, Rev. mod. Phys., 45, 553 (1973).<br />

O 20.6 Di 12:30 H45<br />

Dehydrogenation of Methanol on Rhodium/Vanadium Surface<br />

Alloys and the influence of preadsorbed oxygen — •Georg<br />

Krenn, Klaus D. Rendulic, and Robert Schennach — Institute<br />

of Solid State Physics, Graz University of Technology, Austria<br />

The dehydrogenation of methanol on metal surfaces has regained interest<br />

recently due to the development of methanol powered fuel cells.<br />

Dehydrogenation of methanol on Rh(111) leads to the formation of carbon<br />

monoxide and hydrogen only. The reaction products are the same<br />

on the Rh(111)/V alloy surfaces, but the reaction kinetics differ significantly.<br />

On a Rh(111)/V subsurface alloy and on a Rh(111)/V islands<br />

surface the reaction probabilities stay high up to about 400 K and 550<br />

K, respectively, in contrast to about 200 K on Rh(111). On the Rh(111)<br />

surface with V islands a decrease in the reaction probability occurs due<br />

to buildup of carbon layers on the V islands. Preadsorption of oxygen<br />

on the three surfaces reverses the trend from the oxygen free surfaces, so<br />

that the Rh(111) surface shows the highest activity. With preadsorbed<br />

oxygen water and carbon dioxide are found as additional reaction products.<br />

The difference between the oxygen covered surfaces and the oxygen<br />

free surfaces is discussed in terms of two different initial reaction steps<br />

on the surface. With preadsorbed oxygen a proton transfer reaction from<br />

the OH group of methanol to adsorbed oxygen seems to be the first reaction<br />

step, while on the oxygen free surface conventional dehydrogenation<br />

takes place.<br />

O 20.7 Di 12:45 H45<br />

Mixed quantum classical simulation of DIET processes —<br />

•Christian Bach and Axel Groß — Physik-Department T30,<br />

Technische Universität München, 85747 Garching<br />

We present a mixed quantum-classical method for the simulation of<br />

laser-induced desorption processes at surfaces. In this method, the nuclear<br />

motion is described classically while the electrons are treated quan-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!