09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Magnetismus Donnerstag<br />

Fe/MnF2. The exchange bias results from an unidirectional anisotropy<br />

which is established below the Néel temperature of the antiferromagnetic<br />

layer and can be identified as a shift of the magnetic hysteresis loop. In<br />

time-resolved Kerr rotation, an ultrashort laser pump pulse generates an<br />

unidirectional anisotropy field pulse which triggers coherent precession<br />

of the magnetization in the ferromagnetic layer. This coherent precession<br />

is monitored by a time-delayed laser probe pulse yielding a quantitative<br />

method to study magnetic anisotropy, ultrafast switching and damping<br />

phenomena.<br />

Work supported by DFG through SPP 1133, grant no. BE 2441/2-1<br />

MA 28.12 Do 18:00 H23<br />

Evidence of spin-pumping effect in the FMR of coupled trilayers<br />

— •T. Toliński 1,2 , K. Lenz 1 , J. Lindner 1,3 , E. Kosubek 1 , and<br />

K. Baberschke 1 — 1 Institut für Experimentalphysik, Freie Universität<br />

Berlin, Arnimallee 14, 14195 Berlin, Germany — 2 Permanent address: Institute<br />

of Molecular Physics, PAS, Smoluchowskiego 17, 60-179 Poznań,<br />

Poland — 3 New address: Institut für Physik, Universität Duisburg-Essen,<br />

Lotharstr. 1, 47048 Duisburg, Germany<br />

The spin dynamics between two ultrathin ferromagnetic layers (Ni, Co)<br />

exchange coupled via a nonmagnetic Cu spacer of a few monolayers is<br />

studied using in situ ferromagnetic resonance. The angular and the temperature<br />

dependence of the linewidth shows pronounced changes that can<br />

be understood assuming the presence of an additional Gilbert damping<br />

resulting from a spin-current pumped through the interface between the<br />

ferromagnetic and nonmagnetic layers and by considering the dynamical<br />

part of the interlayer exchange coupling. In contrast to investigations on<br />

Fe films decoupled by thick Au spacers [1] the effect of the interlayer<br />

exchange coupling on this phenomenon is presented here. The competition<br />

between the Gilbert damping inherent in the ferromagnetic film<br />

and the Gilbert damping developed by the interface leads to an irregular<br />

behavior of the temperature dependence of the resonance linewidth for<br />

both the in-phase and out-of-phase precessing modes. It is shown that<br />

the oscillatory nature of the coupling is also revealed in the dependence<br />

of the resonance linewidth ∆H on the spacer thickness. Supported by<br />

the DFG (Sfb 290, TP A2).<br />

[1] B. Heinrich et al., Phys. Rev. Lett. 90, 187601 (2003).<br />

MA 28.13 Do 18:15 H23<br />

Comparison of Network Analyzer Ferromagnetic Resonance<br />

(NA-FMR) with pulsed inductive Measurements — •Ingo<br />

Neudecker 1 , Georg Woltersdorfer 2 , Matthias Buess 1 , Christian<br />

Back 1 , and Bret Heinrich 2 — 1 Fakultaet fuer experimentelle<br />

und angewandte Physik, Universitaet Regensburg, Universitaetstrasse<br />

31, 93044 Regensburg — 2 Simon Fraser University, 8888 University<br />

Drive, Burnaby, British Columbia V5A-1S6, Canada<br />

MA 29 Hauptvortrag Nielsch<br />

We placed a 20 ML thick Fe film on top of a lithographically fabricated<br />

coplanar waveguide. In a 20 GHz high frequency setup the ferromagnetic<br />

system was excited first with a continuous sinusoidal excitation using a<br />

Vector Network Analyzer and second without changing the setup with a<br />

field pulse (pulse generator with 70 ps rise time) using a 20 GHz sampling<br />

Oscilloscope to detect the signal.<br />

By means of the resonance line one obtains from the NA-FMR both<br />

the resonance frequency from its position and the damping constant from<br />

its width. From the pulsed inductive measurement one extracts the resonance<br />

frequency using Fourier transformation and the damping constant<br />

from the decay of the observed oscillations.<br />

Varying the magnetic bias field one can consequently derive the resonance<br />

behavior for the two methods.<br />

Our purpose was to compare the fairly new NA-FMR method with its<br />

excellent signal to noise ratio which yields data in the frequency domain<br />

with the pulsed inductive measurement providing a time domain access<br />

to the resonance properties of the system.<br />

MA 28.14 Do 18:30 H23<br />

Coherent magnetization dynamics on Gd(0001) at 3 THz and its<br />

temperature dependence — •Uwe Bovensiepen, Alexey Melnikov,<br />

Ilie Radu, Oleg Krupin, Kai Starke, Eckart Matthias,<br />

and Martin Wolf — Freie Universität Berlin, Fachbereich Physik,<br />

Arnimallee 14, 14195 Berlin<br />

Resonant absorption of femtosecond laser pulses at the exchange split<br />

surface state of Gd(0001) excites coherent optical phonons, which lead<br />

to a periodic modulation of the distance between surface and subsurface<br />

layer with a frequency of 3 THz [1]. This vibration has been investigated<br />

in situ by time-resolved second harmonic (SH) generation on Gd(0001)<br />

films grown in ultrahigh vacuum on W(110). The magnetic SH contribution<br />

has been extracted by analysis of the SH yield for opposite magnetization<br />

directions. As a function of pump-probe delay a modulation of the<br />

surface magnetization at 3 THz is detected, which is attributed to a modulation<br />

of the exchange coupling due to the lattice vibration. We suggest,<br />

that this quasi-instantaneous phonon-magnon coupling is observed near<br />

the surface due to a crossing of phonon and magnon dispersion relations.<br />

As a function of temperature the lattice and the magnetic oscillation<br />

amplitude decrease and vanish near the Curie temperature.<br />

Coherent bulk dynamics is observed by transient reflectivity at 10%<br />

higher frequency. These modes are excited due to coupling of the subsurface<br />

region to the surface vibration.<br />

[1] A. Melnikov et al.; Phys. Rev. Lett., (2003) in press.<br />

Zeit: Freitag 10:15–10:45 Raum: H10<br />

Hauptvortrag MA 29.1 Fr 10:15 H10<br />

Ferromagnetische Nanostäbe und Nanoröhren in selbstgeordneten<br />

Aluminiumoxid-Membranen — •Kornelius Nielsch<br />

— BMBF-Nachwuchsgruppe für Multifunktionale Nanostäbe und<br />

Nanoröhren, Max-Planck-Institut für Mikrostrukturphysik, Halle<br />

Die potentiellen Anwendungsgebiete für magnetische Nanoröhren und<br />

Nanostäbe reichen von Biotechnologie zu MRAMs. Aufgrund der potentiellen<br />

Anwendung als Datenspeicherung haben magnetische Nanostabensembles<br />

eine besondere wissenschaftliche Aufmerksamkeit in jüngster<br />

Zeit erfahren. Als Formstruktur wurden bienenwabenförmige Al2O3-<br />

Membranstrukturen zur Herstellung der Ni-, Fe- oder Co-Stabensembles<br />

mit periodischen Abständen von 65 nm und 100 nm und Durchmessern<br />

von 25 bis 55 nm verwendet. Aufgrund von Selbstorganisation sind<br />

die Nanostäbe hexagonal im 2D-Gittern quasi polykristallin angeordnet.<br />

Vor allem Nickel-Nanostabensemles zeigten eine geringe Dipolwechselwirkung<br />

im Ensemble und wurden intensiv mit SQUID-Magnetometer<br />

und MFM charakterisiert. Mittels Imprint-Lithographie konnten großflächig<br />

perfekt geordnete Stabensembles erzeugt werden. Ferner wurden<br />

mittels Brillouin-Lichstreuung quantisierte Energiezustände in den<br />

Magnetstäben nachgewiesen. Durch Polymerbeschichtung der Membranwände<br />

konnten Kobalt-Nanoröhren mit einer Wandstärke von 5 bis<br />

20 nm und einem Durchmesser von 200 bis 500 nm hergestellt werden.<br />

Diese Arbeit fand in Zusammenarbeit mit den Arbeitsgruppen von Prof.<br />

C.A. Ross (MIT, Boston, USA), Prof. H. Kronmüller (MPI-Stuttgart),<br />

Prof D. Weiss (Uni Regensburg) und Prof. M.H. Kuok (National Universität<br />

Singapur) statt.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!