09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Magnetismus Donnerstag<br />

MA 26 Mikro- und nanostrukturierte Materialien<br />

Zeit: Donnerstag 15:15–18:45 Raum: H10<br />

MA 26.1 Do 15:15 H10<br />

MAGNETIC PROPERTIES OF BULK AMORPHOUS Fe-<br />

Cr-Mo-Ga-P-C-B ALLOYS — •Mihai Stoica 1 , Stefan Roth 1 ,<br />

Jürgen Eckert 1,2 , and Ludwig Schultz 1 — 1 IFW Dresden, Institut<br />

für Metallische Werkstoffe, Postfach 270016, D-01171 Dresden, Deutschland<br />

— 2 TU Darmstadt, FG Physikalische Metallkunde, Petersenstrasse<br />

23, D-64287 Darmstadt, Deutschland<br />

The Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloy exhibits good<br />

soft magnetic properties. However, the maximum achievable diameter of<br />

these Fe-based alloys is limited to only a few millimeters. Amorphous<br />

rods with diameters of 1.5-3 mm and discs with 10 mm diameter and<br />

1 mm thickness were prepared by copper mold casting. The coercivity<br />

of as-cast rods and disc is around 5 A/m, decreasing up to less than 1<br />

A/m upon annealing. The coercivity is expected to depend on the volume<br />

fraction of crystalline inclusions. The saturation polarization is around<br />

0.8 T and the magnetostriction constant λ = 9 ppm.<br />

On the other hand, bulk amorphous samples with larger sizes or various<br />

shapes can be prepared by powder metallurgical methods, i.e. mechanical<br />

alloying or ball milling combined with subsequent consolidation of<br />

the resulting powders. The aim of present work is to compare the magnetic<br />

properties of as-cast amorphous samples obtained by copper mold<br />

casting with samples prepared by hot pressing of ball milled melt-spun<br />

ribbons.<br />

MA 26.2 Do 15:30 H10<br />

Domain observations in nanocrystalline ribbons — •Sybille Flohrer<br />

1 , Rudolf Schäfer 1 , Ludwig Schultz 1 und Giselher Herzer<br />

2 — 1 Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden,<br />

P.O. Box 270016, D-01171 Dresden, Germany — 2 Vacuumschmelze<br />

GmbH & Co. KG, Grüner Weg 37, D-63450 Hanau, Germany<br />

Soft-magnetic nanocrystalline ribbons of the FeCuNbSiB type consist<br />

of 10-15 nm wide crystalline grains of ferromagnetic FeSi, which are magnetically<br />

coupled by a ferromagnetic metallic glass matrix. The exchange<br />

coupling between the two magnetic phases leads to a seemingly uniform<br />

magnetic material from the viewpoint of magnetic microstructure.<br />

Kerr-microscopy observations on a variety of Fe73Cu1Nb3Si16B7 ribbons<br />

treated under different conditions are presented. Magnetization<br />

processes of annealed ring cores with strong and weak permeability are<br />

compared, and the domains in ribbons with creep- and magnetizationinduced<br />

anisotropy have been observed. Differences in the domain behavior<br />

between high and low permeability material are explained in terms of<br />

the random anisotropy model considering the ratio of average magnetocrystalline<br />

and induced anisotropy.<br />

MA 26.3 Do 15:45 H10<br />

Nanocrystalline hard magnetic FePt powders — •Julia Lyubina<br />

1 , Oliver Gutfleisch 1 , Nora M. Dempsey 2 , Axel Handstein<br />

1 , Karl-Hartmut Müller 1 , and Ludwig Schultz 1 — 1 IFW<br />

Dresden, P.O. Box 270016, D-01171 Dresden, Germany — 2 Laboratoire<br />

Louis Neel, 25 Avenue des Martyrs, BP 166, 38042, Grenoble, France<br />

The ordered FePt (L10) compound possesses high magnetocrystalline<br />

anisotropy (K1 = 6.6 MJm −3 ) and saturation polarisation (Js = 1.43<br />

T), as well as excellent mechanical properties and corrosion resistance.<br />

Thus, it is a promising candidate for permanent magnet applications,<br />

for instance in micro-electromechanical systems (MEMS). In the present<br />

work we report on the preparation of nanocrystalline hard magnetic<br />

Fe50+xPt50−x (x = 0; 5; 10.5) powders by mechanical milling at liquid<br />

nitrogen temperature followed by annealing. The evolution of phase composition,<br />

chemical order, and magnetic properties is studied as a function<br />

of composition and annealing conditions. All the powders contain a mixture<br />

of highly ordered L10 FePt (up to 90 vol. %), disordered FePt, as<br />

well as Fe3Pt and FePt3 phases. The highest coercivity of µ0JHc = 0.7 T<br />

was achieved in the Fe50Pt50 powder annealed at 450 0 C for 48 h, which<br />

is substantially higher compared to that of conventional bulk FePt. The<br />

microstructure of the annealed FePt powders has a lamellar character<br />

with a typical grain size of about 40 nm. The coercivity increases with<br />

increasing volume fraction of the L10 phase and degree of chemical order.<br />

The authors are grateful to the DFG SFB 463 for financial support.<br />

MA 26.4 Do 16:00 H10<br />

Deep-submicron magnetic tunnel junctions patterned with<br />

hydrogen silsesquioxane — •M. Krämer 1 , R. Adam 1 , A. van der<br />

Hart 1 , H. Kohlstedt 2 , M. Weides 2 , H. Dassow 2 , and J. Schelten<br />

1 — 1 Institut für Schichten und Grenzflächen, Forschungszentrum<br />

Jülich GmbH, D-52425 Jülich — 2 Institut für Festkörperforschung,<br />

Forschungszentrum Jülich GmbH, D-52425 Jülich<br />

Nanostructuring of magnetic thin films is a necessary step in the investigation<br />

of physical phenomena like single domain behaviour or superparamagnetism,<br />

as well as, in the development of ultrasmall magnetic<br />

tunnel junctions (MTJs) for high density magnetic memories. The aim<br />

of our work is to fabricate magnetic tunnel junctions with lateral dimensions<br />

far below one micrometer. To reach this goal a negative tone resist<br />

based technique for the fabrication of deep-submicron magnetic tunnel<br />

junctions using hydrogen silsesquioxane (HSQ) has been devised. HSQ is<br />

an inorganic three dimensional polymer exhibiting SiO2-like properties<br />

after annealing and was reported to behave as a negative e-beam resist<br />

with a resolution better than 50 nm. This was used to pattern magnetic<br />

trilayers into lines with a minimum width smaller than 60 nm connected<br />

to external bonding pads. MTJs were then formed by placing a second<br />

line across the first after edge isolation. Magnetoresistance measurements<br />

performed on MTJs smaller than 100 nm are presented.<br />

MA 26.5 Do 16:15 H10<br />

Magnetic recording on nanostructures — •Manfred Albrecht 1 ,<br />

Charles T. Rettner 2 , Andreas Moser 3 , Margaret E. Best 3 ,<br />

and Bruce D. Terris 3 — 1 University of Konstanz, Dept. of Physics,<br />

P.O.Box M631, D-78547 Konstanz, Germany — 2 IBM Almaden Research<br />

Center, 650 Harry Road, San Jose, CA 95120, USA — 3 Hitachi San Jose<br />

Research Center, 650 Harry Road, San Jose, CA 95120, USA<br />

The creation of lithographic magnetic nanostructures for single-bit<br />

data storage is recognized as a promising approach to overcoming the<br />

areal density limit for magnetic recording imposed by superparamagnetism<br />

[1].<br />

Isolated tracks of magnetic single-domain nanostructures with lateral<br />

sizes of up to 30 nm have been fabricated by patterning perpendicular<br />

Co70Cr18Pt12 continuous films using focused ion beam lithography. We<br />

demonstrate writing and reading of individual nanostructures using a<br />

scanning magnetoresistive microscope. We present results on transition<br />

position jitter and signal-to-noise ratio (SNR) for nanostructure arrays<br />

and compare them with those on equivalent unpatterned strips of the media.<br />

We observe that patterning dramatically reduces jitter and improves<br />

SNR, which is independent of track width [2]. Moreover, the synchronization<br />

requirements needed for writing bits in patterned media was<br />

investigated and a novel type of magnetic pattern for servo control was<br />

introduced [3].<br />

[1] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).<br />

[2] M. Albrecht et al., Appl. Phys. Lett. 81, 2875 (2002).<br />

[3] M. Albrecht et al., Appl. Phys. Lett. 83, (2003) in press.<br />

MA 26.6 Do 16:30 H10<br />

Lorentzmikroskopische Untersuchungen an Permalloy-<br />

Kreisringen — •Thomas Uhlig, Christian Dietrich und Josef<br />

Zweck — Institut für Experimentelle und Angewandte Physik,<br />

Universität Regensburg, Universitätsstr. 31, 93053 Regensburg<br />

Ringförmige magnetische Strukturen im µm-Bereich wurden in den<br />

vergangenen Jahren verstärkt untersucht [1], da sie als potentielle Kandidaten<br />

für die Verwirklichung magnetoresistiver Speicherelemente gelten<br />

[2]. Die besondere Eignung folgt aus dem minimalen Streufeld und den<br />

definierten Magnetisierung- und Schaltzuständen.<br />

Durch den Einsatz der differentiellen Phasenkontrastmikroskopie<br />

(DPC) [3] am Transmissionselektronenmikroskop kann sowohl die<br />

Domänenkonfiguration als auch die Hysteresekurve eines einzelnen<br />

Rings bestimmt werden. Durch gezielte geometrische Variationen an<br />

den Proben lässt sich das Ummagnetisierungsverhalten beeinflussen.<br />

Die dadurch veränderten Induktionskonfigurationen im Objekt können<br />

simultan direkt beobachten werden.<br />

[1] z.B. Rothman J., Kläui M., Lopez-Diaz L., Vaz C.A.F., Bleloch A.,<br />

Bland J.A.C., Cui Z., Speaks R., Phys.Rev.Lett. 86, 6 (2001), 1098<br />

[2] Zhu J.G., Zheng Y., Prinz G.A., J.Appl.Phys. 87 (2000), 6668<br />

[3] Chapman J.N., Batson P.E., Waddell E.M., Ferrier R.P., Ultrami-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!