09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Magnetismus Mittwoch<br />

MA 16 Magn. Kopplungsphänomene<br />

Zeit: Mittwoch 15:15–17:30 Raum: H22<br />

MA 16.1 Mi 15:15 H22<br />

Temperature Dependence of Interlayer Exchange Coupling<br />

— •Stephan Schwieger and Wolfgang Nolting — Humboldt-<br />

Universität zu Berlin, Institut für Physik, Newtonstr.15, 12489<br />

Berlin<br />

The coupling of two magnetic layers (e.g. Co,Ni) seperated by a nonmagnetic<br />

spacer (e.g.Cu) is well understood in terms of the quantum<br />

interference model as e.g. proposed by P. Bruno.<br />

The dominant contribution to it’s temperature dependence is less certain.<br />

Two mechanisms that are discussed are the softening of the Fermi<br />

surface within the spacer and the interaction of spin wave excitations<br />

within the magnetic material.<br />

Here another mechanism is proposed, that is based on the strong temperature<br />

dependence of thermodynamic potentials as the free energy.<br />

This reflects the fact, that expectation values like 〈 ¯ Sia ¯ Sib〉 , where ¯ Sia<br />

and Sib indicate spins in different magnetic layers, are strongly temperature<br />

dependent compared to excitations like spin waves or the softening<br />

of the Fermi surface.<br />

This approach is evaluated within the Heisenberg model and compared<br />

to FMR experiments.<br />

MA 16.2 Mi 15:30 H22<br />

Untersuchung der antiferromagnetische Kopplung in CoFeB-<br />

Systemen — •Nils Wiese1,2 , Theodoros Dimopoulos1 , Manfred<br />

Rührig1 , Joachim Wecker1 , Hubert Brückl2 und Günter<br />

Reiss2 — 1Siemens AG, Corporate Technology, Erlangen — 2Universität Bielefeld, Nano Device Group, Bielefeld<br />

In Systemen aus zwei ferromagnetischen Schichten, die durch ein nichtmagnetisches<br />

Material voneinander getrennt sind, kommt es bei dünnen<br />

Zwischenschichtlagen zu einer Kopplung der ferromagnetischen Schichten.<br />

Es wird gezeigt, daß in Systemen, bestehend aus zwei Lagen aus<br />

amorphen CoFeB und einer dünnen Ru-Zwischenschicht, eine oszillierende<br />

Kopplung bei Variation der Zwischenschichtdicke beobachtet wird.<br />

Die Größe der antiferromagnetischen Kopplung J beträgt im ersten Maximum<br />

der Kopplung J = −0.8 J<br />

m2 und ist damit um einen Faktor 10<br />

kleiner als in synthetischen Antiferromagneten aus CoFe/Ru/CoFe.<br />

Die Koerzitivfeldstärke Hc kann über Q = m1+m2 eingestellt werden,<br />

m1−m2<br />

wobei m1, m2 die magnetischen Momente der Einzelschichten sind,[1] und<br />

ändert sich für CoFeB linear mit Q zwischen 0.3 und 1.4 kA<br />

m .<br />

[1] v.d. Berg et al., IEEE Trans. Magn. 32, 4624 (1996)<br />

MA 16.3 Mi 15:45 H22<br />

Evidence for three-dimensional non-collinear antiferromagnetic<br />

order in single-crystalline FeMn ultrathin films — •W. Kuch,<br />

L. I. Chelaru, F. Offi, J. Wang, M. Kotsugi, and J. Kirschner<br />

— Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120<br />

Halle<br />

Experimental evidence for a three-dimensional non-collinear antiferromagnetic<br />

spin structure in ultrathin single-crystalline fcc Fe50Mn50 layers<br />

is obtained from magnetic circular dichroism photoelectron emission<br />

microscopy (XMCD-PEEM) and x-ray magnetic linear dichroism. Layerresolved<br />

as-grown domain images of epitaxial trilayers grown on Cu(001)<br />

are presented in which FeMn is sandwiched between ferromagnetic layers<br />

with different easy axes. Measurements of trilayers using Co or Ni<br />

as the bottom layer, and combinations of Co and Ni as top layer reveal<br />

the simultaneous presence of antiferromagnetic spin components in the<br />

film plane and normal to the film plane. The absence of x-ray magnetic<br />

linear dichroism at the Fe L3 absorption edge in FeMn/Co bilayers points<br />

towards an FeMn spin structure with no collinear order in the film plane<br />

even when in contact with a saturated ferromagnetic layer. This result<br />

has important implications on theoretical models of the magnetic interface<br />

coupling between ferromagnetic and antiferromagnetic layers and<br />

for understanding the exchange bias effect along different magnetization<br />

components.<br />

MA 16.4 Mi 16:00 H22<br />

Magnetically frustrated regions in ultrathin antiferromagnetic<br />

Mn films on Fe(001) — •U. Schlickum, N. Janke-Gilman, B.<br />

Slowik, W. Wulfhekel, and J. Kirschner — Max-Planck-Institut<br />

für Mikrostrukturphysik, Weinberg 2, 06120 Halle<br />

By using spin-polarized scanning tunneling microscopy [1], we studied<br />

the magnetic behavior of ultra-thin antiferromagnetic Mn films grown on<br />

a ferromagnetic Fe(001) substrate. Mn on Fe(001) is a topological antiferromagnet,<br />

so that adjacent Mn layers couple antiferromagnetically to<br />

each other. Where Mn overgrows a step of the underlying Fe(001) substrate,<br />

the thickness of Mn on different sides of the step edge differs by<br />

one monolayer (ML). This results in a magnetically frustrated region at<br />

the step edges. As theoretically predicted [2], this frustration resembles<br />

a 180 ◦ domain wall in the Mn film. We investigated the width of these<br />

topologically enforced walls in the antiferromagnet as a function of Mn<br />

film thickness (between 2 and 20 monolayers). A linear broadening of the<br />

wall width with increasing Mn thickness was found. The width of the<br />

wall is twice the Mn thickness. The experimental results are compared<br />

to theoretical calculations.<br />

[1] U. Schlickum et al., Appl. Phys. Lett. 83, 2016 (2003). [2] D. Stoeffler<br />

et al., J. Magn. Magn. Mater.147, 260 (1995).<br />

MA 16.5 Mi 16:15 H22<br />

Reduction of Néel ”orange peel”coupling in magnetic tunnel<br />

junctions due to interface smoothing using low energy ion beams<br />

— •P.A. Beck, B.F.P. Roos, S.O. Demokritov und B. Hillebrands<br />

— Fachbereich Physik und Forschungsschwerpunkt MINAS,<br />

Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 56, 67663<br />

Kaiserslautern<br />

The most decisive and sensitive characteristic of magnetic tunnel junctions<br />

(MTJ), which are used in magnetic sensors and memory, is a small<br />

and reproducible switching field. Due to the magnetic dipole coupling<br />

(Neel ”orange peel”coupling) between the free and the pinned magnetic<br />

layers this field is strongly affected by the morphology of the interfaces<br />

in MTJ.<br />

In this work we have used normal incident argon ions with their energy<br />

of 20 − 90eV to smooth the interfaces of MTJs. First, to study the<br />

influence of the ion bombardment a single layer 15nm Ni80Fe20 /SiO2/Si,<br />

identical to a free magnetic layer of a typical MTJ has been used. We<br />

have studied the influence of the ion energy on the smoothing and have<br />

determined the optimum conditions for this process. The morphology of<br />

the layer surface has been imaged using an in-situ scanning tunneling<br />

microscope (STM). The obtained images document the reduction of the<br />

roughness of over 40% after the bombardment. Second, MTJs were prepared<br />

based on the smoothed layers, and their remagnetization curves<br />

have been recorded. In agreement with the STM results, the ”orange<br />

peel”coupling determined from the curves is significantly reduced due to<br />

bombardment.<br />

MA 16.6 Mi 16:30 H22<br />

Two dimensional recrystallization, the key towards temperature<br />

stable Co/Cu multilayers — •Sonja Heitmann 1 , Andreas<br />

Hütten 1 , Guido Schmitz 2 , and Günter Reiss 1 — 1 Universität<br />

Bielefeld, Fakultät für Physik, Universitätsstraße 25, 33615 Bielefeld —<br />

2 Westfälische Wilhelms-Universität Münster, Institut für Materialphysik,<br />

Wilhelm-Klemm-Straße 10, 48149 Münster<br />

One of the major concerns for automotive sensor application is the temperature<br />

stability at elevated temperatures. The breakdown of the GMReffect<br />

amplitude of Co/Cu multilayers beyond 250 ◦ C [1] and 350 ◦ C [2] for<br />

Co layer thickness of 1nm and 1.5nm, respectively, reveals the weakness<br />

of conventionally prepared multilayer systems.<br />

However, the objective of this talk is to demonstrate that alternatively<br />

prepared Cu/Co multilayers are very much able to withstand high temperature<br />

without a degradation of the GMR-effect amplitude. The key<br />

is to utilize a two dimensional recrystallization process at sufficient high<br />

temperatures around 500 ◦ C. It will be shown that these multilayers are<br />

stable upon subsequent annealing at temperatrures between 400 ◦ C and<br />

500 ◦ C. The microstructural evolution will be linked to results concerning<br />

transport, magnetic and microstructure measurements and will reveal<br />

the interplay of layer quality, grain size and orientation with crystalline<br />

anisotropy, antiferromagnetic coupling and GMR.<br />

MA 16.7 Mi 16:45 H22<br />

90 ◦ coupling in (Fe/Cr/Fe)AFM/Cr/Fe system epitaxially<br />

grown on GaAs(001) — •M. Przybylski 1 , J. Grabowski 1 , W.<br />

Wulfhekel 1 , M. Rams 2 , and J. Kirschner 1 — 1 Max-Planck-<br />

Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle — 2 Institute<br />

of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!