09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Oberflächenphysik Donnerstag<br />

is identified as the lowest energy configuration over a broad range of oxygen<br />

pressures. The stabilization of the Fe3O4(001)-surface goes together<br />

with significant changes in the electronic and magnetic properties, e.g. a<br />

halfmetal-to-metal transition. [1] K. Reuter and M. Scheffler, Phys. Rev.<br />

O 30 Hauptvortrag Denecke<br />

B 65, 035406, (2002). [2] R. Pentcheva et al., Phys. Rev. Lett. 90, 076101<br />

(2003). (in collab. with M. Scheffler and W. Moritz; DFG support, PE<br />

883)<br />

Zeit: Donnerstag 10:15–11:00 Raum: H36<br />

Hauptvortrag O 30.1 Do 10:15 H36<br />

Surface chemistry studied by in-situ x-ray photoelectron spectroscopy<br />

— •Reinhard Denecke — Physikalische Chemie II, Universität<br />

Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen<br />

Important aspects of surface science are the dynamics of adsorption<br />

and reaction processes. Using high-resolution x-ray photoelectron spectroscopy<br />

together with high flux synchrotron radiation and in combination<br />

with a molecular beam, such time-dependent processes can be<br />

followed on a time scale of seconds. Spectroscopic information about the<br />

O 31 Oberflächenreaktionen II<br />

species involved can be obtained from the binding energy shifts of adsorbate<br />

and substrate core levels. In the case of hydrocarbons, the vibrational<br />

fine structure can additionally be used to identify surface species.<br />

From quantitative information obtained by intensity analysis, kinetic parameters<br />

can be derived. Examples are discussed for bimolecular reactions<br />

(CO oxidation), activated adsorption (dissociative adsorption of methane<br />

and ethane) and thermal dehydrogenation of hydrocarbons.<br />

Supported by the DFG (Ste 620/4-2).<br />

Zeit: Donnerstag 11:15–13:00 Raum: H36<br />

O 31.1 Do 11:15 H36<br />

Rastertunnelmikroskopische Untersuchung elektroneninduzierter<br />

Prozesse an D2O-Molekülen und -Clustern auf fcc(111)-<br />

Metalloberflächen — •Heiko Gawronski, K. Morgenstern, K.-<br />

F. Braun und K.-H. Rieder — Freie Universität Berlin, Institut für<br />

Experimentalphysik, Arnimallee 14, 14195 Berlin<br />

Diffusion von D2O-Molekülen und kleinen Clustern auf Ag(111)<br />

und Au(111) wird bei 5,5K mittels des Elektronenstroms eines<br />

Tieftemperatur-Rastertunnelmikroskops(RTM) induziert. Hierbei wird<br />

die Abhängigkeit der Diffusion von der Anregungsenergie und der Anregungsdauer<br />

untersucht. Dies erlaubt es, Aussagen über die Abhängigkeit<br />

der Oberflächenreaktionen vom Adsorptionsplatz, der Clustergröße sowie<br />

der angeregten molekularen Schwingung zu treffen. Zunächst werden<br />

die Adsorbate über ihre scheinbaren Höhen identifiziert. Anschließend<br />

induziert man eine diffusive Bewegung durch Injektion von Tunnelelektronen<br />

verschiedener Energie und bestimmt so die Anregungsenergien<br />

der D2O-Moleküle auf den beiden Substraten. Für einzelne Moleküle liegen<br />

diese bei (400±10)mV auf Ag(111) bzw. (440±10)mV auf Au(111)<br />

wobei die Diffusion nach durchschnittlich 0,5ms erfolgt. Die Anregung<br />

der Diffusion eines D2O-Clusters mit der RTM-Spitze direkt über einem<br />

Cluster benötigt auf Au(111) eine Anregungsenergie von (250±10)mV,<br />

während eine Anregung mit der Spitze im Abstand einiger nm erst bei<br />

(480±10)mV stattfindet. Diese Ergebnisse werden mit Ergebnissen von<br />

H2O auf Cu(111) und auf Ag(111) verglichen.<br />

O 31.2 Do 11:30 H36<br />

Interaction of He, Ne and Ar metastable atom beams<br />

with multilayer tunnel systems — •Domokos Kovacs 1 , Johannes<br />

Berndt 1 , Jörg Winter 1 , and Detlef Diesing 2 —<br />

1 Experimentalphysik 2, Ruhr-Universität Bochum — 2 Institut für<br />

Schichten und Grenzflächen 3, Forschungszentrum Jülich<br />

The collision of metastable rare gas atoms He, Ne and Ar with a metal<br />

surface is a well investigated process in surface science. The process leads<br />

with an efficient rate to a relaxation of the atoms and a simultaneous electron<br />

emission from the metal surface. The energy spectrum of the emitted<br />

electrons is a wide distribution with a maximal energy of 4 eV. Due to the<br />

significant width of the emitted electron spectrum one can think about<br />

a distribution of excited defect electrons in the electron emitting metal<br />

surface. This kind of electronic excitation is difficult to detect in a bulk<br />

metal. In a 15 nm thick silver film however the defect electrons may reach<br />

the opposite interface of the metal film. In a multilayer tunnel system,<br />

separating the thin silver film from an aluminium film by a 2 nm thick<br />

oxide spacer one can detect an electron current from the base electrode<br />

to the silver electrode which is exposed to the metastable beam. Competing<br />

processes with deexcitation are discussed. By the application of<br />

a grid filter in the transport tube between the discharge and the vacuum<br />

chamber one can seperate between ion neutralization reactions and<br />

metastable deexcitation. By an asymmetric chopping unit which allows<br />

the exposition of the samples to alternating particle-photon and photon<br />

fluxes we discuss the contribution of the photon induced tunnel current<br />

to the total tunnel current.<br />

O 31.3 Do 11:45 H36<br />

Molecular scattering and adsorption at metallic surfaces studied<br />

by ab initio molecular dynamics simulations — •Axel Groß —<br />

Physik-Department T30, Technische Universität München, 85747 Garching<br />

Molecular dynamics simulations based on density functional theory<br />

(DFT) calculations have been performed to study the interaction of simple<br />

molecules with metallic surfaces. In the simulations, the surface atoms<br />

have been treated dynamically thus allowing a realistic description of the<br />

energy transfer from the impinging molecules to the substrate. In particular,<br />

we focus on the systems O2/Pt(111) [1] and H2/Pd(100). The<br />

energy transfer and dissociation process of O2 which can adsorb both<br />

molecularly as well as dissociatively on Pt(111) is analysed in detail. In<br />

the simulation of H2 adsorption on metallic surfaces, the substrate atoms<br />

are usually kept fixed because of the large mass mismatch between H2<br />

and the metal atoms [2]. This approximation will be critically questioned<br />

by examining the influence of the recoil of the metal atoms on the H2<br />

adsorption dynamics.<br />

[1] A. Groß, A. Eichler, J. Hafner, M.J. Mehl, and D.A. Papaconstantopoulos,<br />

Surf. Sci. 539, L542 (2003).<br />

[2] A. Groß, Surf. Sci. Rep. 32, 291 (1998).<br />

O 31.4 Do 12:00 H36<br />

First-principles Investigation of Structural and Chemical<br />

Properties of Nanoporous Carbon — •Suljo Linic, Johan M.<br />

Carlsson, and Matthias Scheffler — Fritz-Haber-Institut der<br />

Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin<br />

Production of styrene by dehydrogenation of ethylbenzene(ET) is one<br />

of the most important processes in chemical industry. Iron oxide is used<br />

as catalyst, but it has been observed that ET decomposes during an induction<br />

period leaving nanoporous carbon (NPC) on the oxide support.<br />

NPC are curved, defective, graphitic sheets and experiments have shown<br />

that such materials are active catalysts for oxidative dehydrogenation of<br />

ET.[1] Recently, it was therefore suggested that the actual catalyst under<br />

reaction conditions is NPC.[2] This motivates a theoretical study of<br />

NPC. Our results indicate on the one hand that flat and curved basal<br />

planes of graphitic sheets are chemically inert. Vacancies on the other<br />

hand leave dangling bonds and increase the density of state close to the<br />

Fermi level. This gives the vacancies a much higher reactivity, which is<br />

examplified by a large exothermal energy for dissociative adsorption of<br />

O2. We have then studied oxidation of the defects as function of pressure<br />

and temperature. The resulting oxygenated vacancies show interesting<br />

properties as active sites in the dehydrogenation process. [1] M. S. Kane<br />

et al., Ind. Eng. Chem. Res. 35, 3319 (1996). [2] G. Mestl et al., Angew.<br />

Chem. Int. Ed. 40, 2066 (2001).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!