09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Halbleiterphysik Mittwoch<br />

bildung der Modenstrukturen wird diskutiert.<br />

HL 32.3 Mi 18:15 H17<br />

Modeling of optical properties for type-II semiconductor<br />

lasers — •Christoph Schlichenmaier 1 , Jörg Hader 2 , Jerry V.<br />

Molony 2 , Angela Thränhardt 1 , Mackillo Kira 1 , and Stephan<br />

W. Koch 1 — 1 Philipps-Universität & Wissenschaftliches Zentrum für<br />

Materialwissenschaften Marburg — 2 Arizona Center for Mathematical<br />

Sciences and Optical Sciences Center, University of Arizona, Tucson,<br />

AZ 85721<br />

Design of advanced semiconductor laser structures demands the insightful<br />

use of compound materials consisting of many constituents.<br />

Smart alignment of heterostructure layers like type-II structures is an<br />

additional way of band gap engineering. Quantum optical modeling of<br />

electron and photon dynamics[1,2] connected with a realistic band structure<br />

explains optical properties and device performance and helps to map<br />

out the parameter space. We discuss gain, α-factors and luminescence for<br />

various systems.<br />

[1] A. Girndt, S.W. Koch, and W.W. Chow, Appl. Phys. A 66, 1 (1998).<br />

[2] M. Kira, F. Jahnke, W. Hoyer, and S.W. Koch, Prog. Quantum Electron.<br />

23, 189 (1999).<br />

HL 32.4 Mi 18:30 H17<br />

Microscopic Modelling of Semiconductor Laser Dynamics<br />

— •Angela Thränhardt 1 , Christoph Schlichenmaier 1 ,<br />

Stephan W. Koch 1 , Jörg Hader 2 , and Jerome V. Moloney 2<br />

— 1 Fachbereich Physik und Zentrum f*r Materialwissenschaften,<br />

Philippsuniversit*t Marburg, Renthof 5, 35032 Marburg — 2 Arizona<br />

Center of Mathematical Sciences and Optical Sciences Center, University<br />

of Arizona, Tucson, Arizona 85721<br />

To predict the optical properties of semiconductor laser structures, a<br />

microscopic treatment of the carrier dynamics is essential. We calculate<br />

the dynamics of semiconductor laser structures, fully including carriercarrier<br />

as well as carrier-LO phonon scattering effects. The dynamics<br />

depends on parameters such as the excitation energy and intensity. We<br />

discuss the detailed dynamics which can only be modelled microscopically<br />

as well as the validity of simple rules of thumb for scattering rates<br />

and temperature of injected carriers.<br />

HL 32.5 Mi 18:45 H17<br />

Microscopic Calculation of Relaxation Times in Semiconductor<br />

Laser Structures — •Sascha Becker 1 , Angela Thränhardt 1 ,<br />

Stephan W. Koch 1 , Jörg Hader 2 , Jerome V. Moloney 2 , and<br />

Weng W. Chow 3 — 1 Fachbereich Physik und Zentrum für Materialwissenschaften,<br />

Philippsuniversität Marburg, Renthof 5, 35032 Marburg —<br />

2 Arizona Center of Mathematical Sciences and Optical Sciences Center,<br />

University of Arizona, Tucson, Arizona 85721 USA — 3 Sandia National<br />

Laboratories, Albuquerque, NM 87185-0601 USA<br />

HL 33 III-V Halbleiter I<br />

In semiconductor laser structures, scattering times were classically obtained<br />

by fits to experiment. Although this allows one to fit experimental<br />

spectra, this “theory” has no predictive capability. A microscopic<br />

inclusion of scattering, on the other hand, is very complex and timeconsuming.<br />

We attempt to remedy this dilemma by extracting effective<br />

scattering rates from a microscopic calculation and using these in a relaxation<br />

time model, obtaining good agreement with a microscopic model<br />

for the general features. We discuss dependencies of relaxation times on<br />

different parameters, e.g. carrier distribution and band structure.<br />

HL 32.6 Mi 19:00 H17<br />

Intersubbandelektrolumineszenz von Quantendrahtkaskadenstrukturen<br />

bei 8.5 µm — •Stefan Schmult 1 , Thomas Herrle 1 ,<br />

Werner Wegscheider 1 , Max Bichler 2 , Dieter Schuh 2 und<br />

Gerhard Abstreiter 2 — 1 Universität Regensburg, Institut für<br />

Experimentelle und Angewandte Physik, 93040 Regensburg — 2 Walter<br />

Schottky Institut, Technische Universität München, Am Coulombwall,<br />

85748 Garching<br />

Basierend auf theoretischen Berechnungen [1] wurden Quantendrahtkaskadenemitterstrukturen<br />

im GaAs/AlGaAs-Heterosystem hergestellt.<br />

Die Herstellung der Quantendrahtstrukturen erfolgte mittels des epitaktischen<br />

Überwachsens von atomar glatten Spaltflächen (CEO). Elektrolumineszenz<br />

wurde bei einer Wellenlänge von 8.5µm bei 20K beobachtet<br />

[2]. Überhalb eines Schwellstroms von 200mA ist die emittierte Leistung<br />

pumpstromabhängig und beträgt bis zu 17nW. Der Vortrag beschreibt<br />

zusammenfassend Design und Herstellung der Quantendrahtstrukturen<br />

und stellt Ergebnisse ihrer elektrischen und optischen Charakterisierung<br />

dar. [1] I. Keck, S. Schmult, W. Wegscheider, M. Rother, A.P. Mayer,<br />

Phys. Rev. B 67, 125312 (2003). [2] S. Schmult, I. Keck, T. Herrle, W.<br />

Wegscheider, M. Bichler, D. Schuh, G. Abstreiter, Appl. Phys. Lett. 83,<br />

1909 (2003).<br />

Zeit: Mittwoch 18:15–19:30 Raum: H14<br />

HL 33.1 Mi 18:15 H14<br />

GaMnAs grown by MOVPE under RAS control — •Alexander<br />

Philippou, Stefan Weeke, Markus Pristovsek, and Wolfgang<br />

Richter — Institut für Festkörperphysik, SFb 296, Technische Universität<br />

Berlin<br />

Under the aspect of spin electronics dilute magnetic III-V semiconductors<br />

are of great interest. In this contribution we report on Mn doped<br />

III-V semiconductors which were grown by metal organic vapor phase<br />

epitaxy (MOVPE). In contrast to Molecular Beam Epitaxy the growth<br />

temperatures are much higher (≥ 500 ◦ C). Thus the need for in-situ control<br />

is even more severe for MOVPE. We used reflectance anisotropy<br />

spectroscopy (RAS) to monitor the doping level and roughness during<br />

growth. We determine the critical layer thickness of GaMnAs and correlate<br />

the results with in-situ ellipsometry and ex-situ x-ray diffraction<br />

studies.<br />

HL 33.2 Mi 18:30 H14<br />

Electronic properties of Carbon and Zinc acceptors in GaAs<br />

studied with Low Temperature Scanning Tunneling Microscopy<br />

— •S. Loth 1 , M. Wenderoth 1 , T.C.G. Reusch 1 , L. Winking 1 ,<br />

R.G. Ulbrich 1 , S. Malzer 2 , and G. Döhler 2 — 1 IV. Physikalisches<br />

Institut, Universität Göttingen, D-37077 Göttingen — 2 Institut für Technische<br />

Physik, Universität Erlangen-Nürnberg, D-91058 Erlangen<br />

The electronic properties of single carbon and zinc acceptors located<br />

near {110} surfaces of GaAs were studied with a low temperature UHV<br />

Scanning Tunneling Microscope at 8K. Zn is a substitutional acceptor<br />

on a Ga site with a covalent radius about 30% larger than the replaced<br />

Ga atom. C on the other side is a substitutional acceptor on an As site<br />

and contracts the bonds to the adjacent Ga atoms by about 15%. In<br />

voltage-dependant constant current topographies (-3V to +4.5V) both<br />

dopants show comparable patterns, with a variety of different contrasts.<br />

The orientation of the features is clearly linked to the exact orientation<br />

of the surface under investigation, i.e. (110) vs. (1¯10). Especially at low<br />

voltages the C as well as the Zn acceptor appear as nearly equilateral<br />

triangular protrusions extended over several nanometers. At higher voltages<br />

the symmetry of the triangle evolves into a prolate shape oriented<br />

along (100).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!