09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Halbleiterphysik Freitag<br />

HL 52.2 Fr 12:30 H17<br />

Störbandleitung in Al-dotiertem 6H-SiC — •Michael Krieger,<br />

Kurt Semmelroth und Gerhard Pensl — Lehrstuhl für Angewandte<br />

Physik, Universität Erlangen-Nürnberg, Staudtstr. 7/A3, D-91058 Erlangen<br />

Al-dotiertes 6H-SiC wurde mittels Kapazitäts-Spannungs- (C-<br />

V), Admittanzspektroskopie- (AS), Leitfähigkeits- und Hall-Effekt-<br />

Messungen untersucht. Für C-V und AS wurden Schottky-Kontakte<br />

auf Wafer-Bereichen mit unterschiedlicher Al-Konzentration präpariert<br />

([Al] = 1.8 × 10 17 cm −3 . . . 3.4 × 10 18 cm −3 ). C(T)- bzw. G/ω(T)-Kurven,<br />

aufgenommen an Kontakten mit niedriger [Al], zeigen jeweils eine Stufe<br />

bzw. einen Peak, die dem Al-Akzeptor zugeordnet wird. Eine zweite Stufe<br />

bzw. ein zweiter Peak wurde an Kontakten mit [Al] ≥ 7 × 10 17 cm −3<br />

beobachtet. Der Arrhenius-Plot der G/ω(T)-Peak-Maxima ergibt eine<br />

Aktivierungsenergie von 17meV, die als thermische Aktivierungsenergie<br />

für Hopping-Leitung in einem Störband interpretiert wird. Die gleiche<br />

Energie wurde auch aus Leitfähigkeitsmessungen an dem gleichen Wafer-<br />

Bereich wie für AS ermittelt. Für T > 160K entspricht die Steigung der<br />

ρ(1/T)-Kurve der Aktivierungsenergie des Al-Akzeptors; für T < 160K<br />

wurde aus der Steigung eine Aktivierungsenergie von 17meV ermittelt.<br />

Bei T ≈ 75K ändert der Hall-Effekt, gemessen an der gleichen Probe,<br />

sein Vorzeichen von plus nach minus. Die Ergebnisse werden im Rahmen<br />

der Arbeiten über Störbandleitung von Mott und Twose bzw. Shklovskii<br />

und Efros diskutiert.<br />

HL 53 Elektronentheorie<br />

HL 52.3 Fr 12:45 H17<br />

Low Density of Interface States in 4H-SiC MOS Capacitors<br />

Generated by Nitrogen Implantation — •Florin Ciobanu 1 ,<br />

Gerhard Pensl 1 , Valeri Afanas’ev 2 , and Günter Wagner 3<br />

— 1 Lehrstuhl für Angewandte Physik — 2 Department of Physics,<br />

University of Leuven, Belgium — 3 Institut für Kristallzüchtung, Berlin<br />

Nitrogen (N)-doped 4H-SiC epilayers (thickness = 8µm, [N] =<br />

2.2·10 16 cm −3 ) were, in addition, implanted with N at concentrations varying<br />

between 1·10 17 cm −3 and 3·10 19 cm −3 (Gaussian profile with maximum<br />

located 30nm apart from the wafer surface). MOS capacitors were fabricated<br />

on the N-implanted surface by nominally dry oxidation at 1120 ◦ C<br />

for 24 h (oxide thickness = 110nm) followed by a post-oxidation anneal at<br />

the same temperature in Ar for 60 min. High-frequency conductance measurements<br />

reveal an interface state density DIT in the low 10 10 eV −1 cm −2<br />

- range close to the conduction band edge. This value is about 3 orders of<br />

magnitude lower than corresponding values for standard-processed 4H-<br />

SiC MOS capacitors. However, the N implantation causes a negative<br />

flatband shift of the C-V characteristics, which probably originates from<br />

a fixed charge at the interface (≈ 10 12 elementary charges/cm 2 ). The effect<br />

of the implanted N concentration on the density of interface states<br />

and on the flatband shift is investigated and discussed.<br />

Zeit: Freitag 12:00–12:30 Raum: H13<br />

HL 53.1 Fr 12:00 H13<br />

A renormalization approach for the Anderson model in d = 1<br />

and d = 2 at the band edge: Scaling of the localization length<br />

— •Stefanie Russ — Institut für Theoretische Physik III, Universität<br />

Giessen, D-35392 Giessen, Germany<br />

A renormalization procedure for the electronic wave functions of the<br />

one- and two-dimensional Anderson model with diagonal disorder is developed<br />

that applies close to the band edges. This theory leads in d = 1 to<br />

a scaling form of the localization length λ ∼ 〈ǫ 2 〉 −1/3 f((2 − |E|)/〈ǫ 2 〉 2/3 ),<br />

in agreement with former works. In d = 2 a similar scaling form applies<br />

for the localization volume V (participation ratio), i.e. V 1/2 ∼<br />

〈ǫ 2 〉 −1/2 g((4 − |E|)/〈ǫ 2 〉). Here, 〈ǫ 2 〉 is the variance of the site potentials,<br />

E is the energy and f(x) and g(x) are the scaling functions<br />

(f(0) = g(0) = 1).<br />

λ and V close to the band edges are studied by numerical simulations<br />

and confirm this scaling ansatz. The scaling functions f(x) and g(x) show<br />

a crossover between the two regimes x ≪ 1 and x ≫ 1. It is shown that<br />

these two regimes refer to Λ ≫ λ0 and Λ ≪ λ0, respectively where Λ is<br />

the wavelength, λ0 in d = 1 is the localization length at the band edge<br />

and λ0 in d = 2 is the effective localization length V 1/2 at the band edge.<br />

HL 53.2 Fr 12:15 H13<br />

A Ground State based Exact-Exchange Formalism: Implementation<br />

and Applications — •Matthias Wahn 1 und Jörg Neugebauer<br />

2 — 1 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg<br />

4-6, D-14195 Berlin-Dahlem — 2 Universität Paderborn, Fakultät<br />

für Naturwissenschaften, FB 6 Physik, Warburger Straße, D-33095 Paderborn<br />

Recent studies have shown that the exact treatment of the exchangepotential<br />

(EXX-method) within the Kohn-Sham formalism significantly<br />

improves the description of bandgaps within density-functional theory [1].<br />

The original formulation is based on a Greens function approach requiring<br />

the calculation of a large number of unoccupied states thus making<br />

the approach computationally rather expensive. We have therefore developed<br />

an alternative formulation [2], recently also proposed by [3], which<br />

is solely based on ground-state quantities and implemented it into our<br />

plane wave pseudopotential program SFHIngX. Compared to the original<br />

formulation it speeds up the calculations significantly and requires<br />

also much less memory. The new approach has been successfully applied<br />

on various III-V and II-VI semiconductors. Also, it turned out that it<br />

provides a direct way to analyze and visualize electronic self-interaction<br />

effects.<br />

[1] M. Städele, M. Moukara, J.A. Majewski, P. Vogl, and A. Görling,<br />

Phys. Rev. B 59, 10031 (1999).<br />

[2] Matthias Wahn, Diplomarbeit, TU Berlin (2002)<br />

[3] S. Kümmel and J.P. Perdew, Phys. Rev. Lett. 90, 043004 (2003)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!