09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Halbleiterphysik Freitag<br />

HL 50.4 Fr 11:45 H14<br />

TE- and TM-polarization resolved spectroscopy under normal<br />

incidence — •M. Schardt 1 , C. Dotzler 1 , S. Malzer 1 , J.<br />

Müller 2 , G. Rurimo 2 , S. Quabis 2 , G. Leuchs 2 , and G.H. Döhler 1<br />

— 1 Institut für Technische Physik I — 2 Institut für Optik, Universität<br />

Erlangen-Nürnberg, Germany<br />

Normally, optical experiments performed under normal incidence on<br />

semiconductor structures with broken symmetry regarding the direction<br />

perpendicular to the surface (quantum wells and quantum dots, e.g.)<br />

yield information only about transitions involving in-plane (px- and py-<br />

) components of the hole wave functions, because of the in-plane (TE)<br />

polarization of the light. Transitions sensitive to the pz components are<br />

interacting only with TM-polarized light. Recently it has been demonstrated<br />

that a radially polarized laser beam focused through a microscope<br />

objective with a high numerical aperture (NA ≥ 0.9) is perfectly polarized<br />

along the optical axis in its focus. The light is mostly TM polarized<br />

within the whole focus area. So far, experimental evidence of this feature<br />

has been limited to an indirect proof by comparing the resulting spot size<br />

and shape with the theoretical predictions [1]. We are now presenting an<br />

approach allowing for a direct proof of the TM polarization. It is based<br />

on photo current studies of heavy- and light-hole excitonic absorption in<br />

quantum wells and self-assembled dots embedded in pin diodes. At the<br />

same time, this approach represents a novel technique for polarization<br />

resolved spectroscopy.<br />

[1] S. Quabis et al., Optics Communications 179 (2000) 1-7<br />

HL 50.5 Fr 12:00 H14<br />

Influence of nitrogen containing barrier layers on the emission<br />

wavelength of InAs/GaAs quantum dots — •Oliver Schumann,<br />

Lutz Geelhaar, and Henning Riechert — Infineon Technologies<br />

AG, Corporate Research Photonics, 81730 München<br />

We study the effect of varying the matrix material on the emission<br />

wavelength of InAs QDs. The addition of different combinations of nitrogen<br />

and indium into the matrix allows to tune the confining potential of<br />

the QDs and the local and global stress.<br />

Samples have been grown by solid-source MBE assisted by a RF<br />

plasma source for nitrogen incorporation. They were examined by PL<br />

spectroscopy and TEM. We used a self-consistent Schroedinger-Poisson<br />

solver as a simple simulation tool for the changing confinement.<br />

While growing the QDs on a GaAsN layer almost does not affect the<br />

PL wavelength, one can see a red shift of the emission wavelength greater<br />

than 100 nm after introducing nitrogen in the capping layer above the<br />

QDs. In this way an emission wavelength beyond 1.3 µm can easily be<br />

achieved. This tremendous red shift is mainly attributed to the change<br />

in the confining potential. By comparing QDs with quantum wells and<br />

samples with different concentrations of indium and/or nitrogen in the<br />

barrier layers, the role of stress with respect to the emission wavelength<br />

will also be discussed.<br />

HL 50.6 Fr 12:15 H14<br />

Blinking and Bleaching of Individual Silicon Nanocrystals and<br />

Nanocrystal Ensembles — •Jörg Martin 1,2 , Frank Cichos 1 und<br />

Christian von Borczyskowski 2 — 1 Institut für Physik 123705, TU<br />

Chemnitz, 09107 Chemnitz — 2 Institut für Physik 122501, TU Chemnitz,<br />

09107 Chemnitz<br />

We present for the first time detailed studies of individual silicon nanocrystals<br />

by confocal microscopy. Individual nanocrystals obey narrow<br />

emission spectra (150 meV) in the range between 500 nm and 600 nm.<br />

The emission of single nanocrystals shows a strong intermittency (so<br />

called blinking), which is the consequence of an electron tunneling to<br />

surrounding trap states. The blinking process itself obeys a power law<br />

statistics, which is equivalent to a non-stationary behavior. Indeed we<br />

can show, that characteristic times of the blinking, especially the mean<br />

lifetime of dark periods during the blinking are a function of the observation<br />

time. This non-stationarity shows up as a bleaching of the ensemble,<br />

which we can fully explain by the blinking statistics. In addition, an excitation<br />

intensity dependence of the blinking statistics is observed. This<br />

intensity dependence is the result of different tunneling mechanisms, such<br />

as Auger assisted tunneling, which becomes active or inactive at different<br />

excitation intensities. A further consequence of the charge tunneling to<br />

trap states in the environment is a delayed luminescence of nanocrystal<br />

ensembles, which results from the return of charges from the traps to the<br />

nanocrystals conduction band. This delayed luminescence fits well to the<br />

observed blinking behavior of individual nanocrystals.<br />

HL 50.7 Fr 12:30 H14<br />

How individual are individual CdSe nanocrystals? A single<br />

nanocrystal study. — •Frank Cichos 1 , Abey Issac 2 , Thomas<br />

Blaudeck 1 , and Christian von Borczyskowski 2 — 1 Institut für<br />

Physik 123705, TU Chemnitz, 09107 Chemnitz — 2 Institut für Physik<br />

121501, TU Chemnitz, 09107 Chemnitz<br />

The control of the emission intermittency (”blinking”) of single semiconductor<br />

nanocrystals is one of the challenging tasks to create nanounits<br />

i.e. for optoelectronic applications. Such a control has to be based<br />

on the understanding of the blinking process itself, which is currently<br />

only poorly understood. For this purpose we study the blinking process<br />

of individual ZnS capped CdSe nanocrystals over long time periods<br />

to compare the behavior of different nanocrystals. While fluorescent dye<br />

molecules commonly show a very specific blinking statistics, which differs<br />

from molecule to molecule due to the local environment of the molecule,<br />

all studied nanocrystals obey the same blinking statistics within the measurement<br />

accuracy. Further, a change of the surrounding matrix does<br />

not influence the statistics of the blinking process. Therefore, the processes<br />

behind the blinking have to be hierarchical processes. We propose<br />

that one of these processes, which is responsible for the dark periods in<br />

the emission time traces of individual nanocrystals is a charge diffusion<br />

through trap states in the direct vicinity of the nanocrystal. A more detailed<br />

analysis of the blinking further reveals that the processes which<br />

limit the emitting (on) and non-emitting (off) periods of the nanocrystal<br />

are partly decoupled, since on and off periods follow different statistical<br />

laws.<br />

HL 50.8 Fr 12:45 H14<br />

Femtosecond nonlinear spectroscopy of two quantum dots<br />

coupled by dipole-dipole interaction — •Kerstin Müller 1 ,<br />

Thomas Unold 1 , Christoph Lienau 1 , Thomas Elsaesser 1 , and<br />

Andreas D. Wieck 2 — 1 Max-Born-Institut für Nichtlineare Optik<br />

und Kurzzeitspektroskopie, 12489 Berlin — 2 Ruhr-Universität Bochum,<br />

D-44870 Bochum<br />

The transient optical nonlinearities of single semiconductor quantum<br />

dots (QDs) are intensely investigated as QDs receive attention for implementations<br />

of quantum logic. For realizing potentially scalable quantum<br />

gates it is essential to demonstrate coherent interactions between different<br />

quantum dots, e.g. via dipole-dipole coupling[1]. Here, we report the<br />

first study of the transient optical nonlinearities of two coupled interface<br />

quantum dots. With a 2-ps pump laser, we excite the excitonic resonance<br />

of a first QD (QD 1) and monitor the pump-induced biexcitonic<br />

nonlinearity of this QD with an ultrafast probe laser in a near-field spectrometer[2].<br />

Varying the intensity of the pump laser, pronounced Rabi<br />

oscillations are observed. We simultaneously monitor also the excitonic<br />

nonlinearities of one neighboring QD within the 200 nm spot size of the<br />

near-field experiment. We find a clear pump-induced spectral shift of the<br />

exciton resonance of QD 2 due to the dipole-dipole interaction between<br />

both QDs. The observation of Rabi oscillations on the second quantum<br />

dot after resonant excitation of QD 1 unambiguously establishes dipoledipole<br />

coupling between two individual quantum dots.<br />

[1] E. Biolatti et al., Phys. Rev. Lett. 85, 5647 (2000).<br />

[2] T. Guenther et al., Phys. Rev. Lett. 89 057401 (2002).<br />

HL 50.9 Fr 13:00 H14<br />

Optische Spektroskopie an selbstorganisierten InAs–Quantenpunkten<br />

— •Stephan Lüttjohann 1 , Cedrik Meier 1 , Axel<br />

Lorke 1 und Dirk Reuter 2 — 1 Laboratorium für Festkörperphysik,<br />

Universität Duisburg–Essen, Lotharstraße 1, 47048 Duisburg —<br />

2 Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße<br />

150, 44780 Bochum<br />

Die Photolumineszenz (PL) von selbstorganisierten InAs–Quantenpunkten,<br />

eingebettet in eine Feldeffekttransistor–Struktur (MISFET),<br />

wird in Abhängigkeit der angelegten Spannung und der Anregungsleistung<br />

untersucht. Bei moderaten Anregungsleistungen (P ≤ 2mW/cm 2 )<br />

können dabei gleichzeitig Kapazitäts–Spannungs-Spektren (CV) aufgenommen<br />

und so die Anzahl der Elektronen pro Quantenpunkt bestimmt<br />

werden. Es zeigt sich, dass mit zunehmender Anregungsleistung die CV–<br />

Spektren zu kleineren Gatespannungen verschieben. Dies lässt sich auf eine<br />

Löcherakkumulation an der GaAs/AlGaAs–Grenzfläche der MISFET–<br />

Struktur zurückführen. Die bei mittlerer Anregungsleistung auftauchende<br />

Rekombination aus p–Zuständen ist damit nicht auf Pauli–Blocking<br />

zurückzuführen, sondern hängt mit der Verschiebung der Gatespannungsskala<br />

zusammen, die durch die zunehmende Grenzflächenladung verursacht<br />

wird. Darüber hinaus kann aus der gatespannungsabhängigen PL

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!