09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Halbleiterphysik Freitag<br />

die Energiedifferenz zwischen X 2− – und X 3− –Rekombination zu 2,6 meV<br />

bestimmt werden.<br />

HL 50.10 Fr 13:15 H14<br />

Wavelength selective carrier storage in self-organized quantum<br />

dots — •Till Warming 1 , F. Guffarth 1 , R. Heitz 1 , M. Geller 1 ,<br />

P. Brunkov 2 , V.M. Ustinov 2 , and D. Bimberg 1 — 1 Institut für<br />

Festkörperphysik, Technische Universität Berlin, — 2 A.F.Ioffe Physico-<br />

Technical Institute RAS, 194021 St-Petersburg, Russia<br />

Wavelength selective carrier storage in self-organized InAs/GaAs quantum<br />

dots (QDs) is investigated. The small homogeneous broadening of<br />

HL 51 Si/Ge<br />

the exciton transition of a single quantum dot is in high contrast to the<br />

large inhomogeneous broadening of the ground state transition energy<br />

of an ensemble of self-organized QDs. This benefit enables in addition<br />

to the spatially addressing wavelength parallel data storage in future<br />

memory devices. Here we analyze the data storage process in two-color<br />

photocurrent experiments and investigate the dependencies of the electric<br />

field, the temperature and the laser power. This work was funded by the<br />

Nanomat project of the European Commission Growth Programme, contract<br />

number G5RD-CT-2001- 00545, Intas project 2001-774, and SFB<br />

296 of DFG.<br />

Zeit: Freitag 11:30–12:15 Raum: H17<br />

HL 51.1 Fr 11:30 H17<br />

Selective wet chemical etching of Ge islands grown on Si(001)<br />

— •Georgios Katsaros, Carlos Manzano, Giovanni Costantini,<br />

Alexander Bittner, Ulrich Denker, Mathieu Stoffel,<br />

Oliver Schmidt, and Klaus Kern — Max Planck Institut für<br />

Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany<br />

Although Ge quantum dots on Si(001) have been thoroughly studied,<br />

relatively little is known about their composition which, on the other<br />

hand, is a very important factor in determining their optical and electronic<br />

properties. We tackle this problem by means of selective chemical<br />

etching in which Ge is removed preferentially over Si (or vice versa). By<br />

quantitatively knowing the selectivity of the etchant, the atomic force<br />

microscopy images of the structures that remain after the etching of a<br />

quantum dot sample can be interpreted in terms of a spatially resolved<br />

map of the quantum dot composition. The results obtained by applying<br />

this technique to pyramid and dome islands show that the composition<br />

of both types of dots is highly anisotropic. This can be ascribed to the<br />

kinetic pathway that is responsible for the dot formation, growth and<br />

transformation (pyramid-to- dome transition). For every possible application<br />

in a device the Ge quantum dots have to be overgrown with Si. By<br />

applying selective etching of Si over Ge we were able to remove the Si cap<br />

and to get information on the intermixing and the shape changes that<br />

take place during capping as well as on the composition of the remaining<br />

dots. Finally, using the quantum dots as an etching-resistant ”mask” we<br />

could produce interesting free- standing Ge-rich nanostructures.<br />

HL 51.2 Fr 11:45 H17<br />

Metal-Induced Crystallization of Silicon-Germanium Alloys —<br />

•Mario Gjukic, Michael Buschbeck, Robert Lechner, Jens<br />

Lübke, and Martin Stutzmann — Walter Schottky Institut, Technische<br />

Universität München, Am Coulombwall 3, D-85747 Garching<br />

The fabrication of large-grained polycrystalline silicon and silicongermanium<br />

(poly-SiGe) thin films is increasingly important for largearea<br />

electronic devices such as flat panel displays or thin film solar<br />

cells. Fundamental for both applications is the use of cheap and transparent<br />

substrates, such as glass, requiring low temperature processing<br />

steps (T < 500 ◦ C). One method which is known to lead to poly-Si layers<br />

with good structural and electronic properties is the ALuminum-<br />

Induced Layer Exchange (ALILE) process. Here, a bilayer structure of<br />

HL 52 SiC II<br />

aluminum (Al) and amorphous silicon (a-Si) is deposited on a glass substrate<br />

and annealed below the eutectic temperature of the binary Al-Si<br />

system (T < 577 ◦ C). If the layers are separated by a thin oxide film, for<br />

example aluminum oxide or silicon oxide, the annealing process results<br />

in a complete layer exchange (Al and Si change positions) and the formation<br />

of a coherent poly-Si film. Here, we report the successful realization<br />

of poly-SiGe layers over the entire composition range on glass substrates<br />

via the ALILE process. We have investigated if the ALILE process is<br />

also applicable to binary semiconductors such as SiGe or if significant<br />

phase segregation occurs. In addition, optical and electronic properties<br />

of the resulting poly-SiGe layers have been studied. The possibility to<br />

use the obtained alloy films as seed layers for thin film solar cells will be<br />

discussed.<br />

HL 51.3 Fr 12:00 H17<br />

Thermal Conductivity of Isotopically Enriched 28 Si: Revisited<br />

— •R. K. Kremer 1 , M. Cardona 1 , H.-J. Pohl 2 , G. G. Devyatych<br />

3 , and P. G. Sennikov 3 — 1 MPI für Festkörperforschung,<br />

Heisenbergstr. 1, D-70569 Stuttgart, Germany — 2 VITCON Projectconsult<br />

GmbH, Otto-Schott-Str. 13, D-07745 Jena, — 3 Institute of Chemistry<br />

of Highly-Pure Substances, Russian Academy<br />

The thermal conductivity of isotopically enriched 28 Si recently has attracted<br />

particular attention because of a claim of a 60% higher roomtemperature<br />

thermal conductivity of 28 Si as compared to that of Si with<br />

a natural isotope mixture nat Si [1]. It was argued, however, that this result<br />

cannot be reconciled with theoretical estimates which give, at most,<br />

a 20% increase. Because of the potential technological importance of a<br />

significantly larger thermal conductivity of isotopically pure samples of<br />

Si we have, with a steady-state heat-flow technique, redetermined the<br />

thermal conductivity of the previously measured samples and new single<br />

crystal samples of 28 Si and nat Si between 10K and 320K. To estimate<br />

and reduce the disturbing influence of thermal radiation losses at elevated<br />

temperature we have particularly taken care to utilize samples with identical<br />

geometrical dimensions. Close to room-temperature we consistently<br />

find an increase in the thermal conductivity of 28 Si with respect of that<br />

of nat Si of about 10 ± 2 %, whereas the values of this enhancement below<br />

100K are close to that reported in ref. [1].<br />

[1] T. Ruf et al., Solid State Commun., 115, 243 (2000).<br />

Zeit: Freitag 12:15–13:00 Raum: H17<br />

HL 52.1 Fr 12:15 H17<br />

Wird Coimplantation von Donatoren (P, N) mit Si oder C in<br />

4H-SiC dominiert vom Site-competition-Effekt oder der Erzeugung<br />

elektrisch neutraler Defekte? — •Frank Schmid und Gerhard<br />

Pensl — Institut für Angewandte Physik, Universität Erlangen-<br />

Nürnberg<br />

Durch vergleichende Hall-Effekt Messungen an Phosphor<br />

(P)/Stickstoff (N) implantierten und Kohlenstoff (C) oder Silizium (Si)<br />

coimplantierten p-Typ 4H-SiC Epischichten wurde das Ausheilverhalten<br />

von P- bzw. N-Donatoren untersucht. Bei den P- und C/P-implantierten<br />

Proben konnte eine identische elektrische Aktivierung der P Atome<br />

festgestellt werden, während sich bei der Si/P-implantierten Probe die<br />

Konzentration der P-Donatoren um 40% verringerte. Damit ist gezeigt,<br />

dass das Ausheilverhalten der P-implantierten Proben durch den Sitecompetition-Effekt<br />

dominiert wird. Im Vergleich zur N-implantierten<br />

Probe, zeigt die C/N-implantierte Probe eine Reduktion (40%) der elektrisch<br />

aktiven N Atome, was möglicherweise auf den Site-competition-<br />

Effekt zurückgeführt werden kann. Jedoch zeigt die Si/N-implantierte<br />

Probe eindeutig eine starke Verringerung der freien Elektronenkonzentration<br />

(75%) und der Konzentration der Kompensation (20%). Als Ursache<br />

wird die Bildung von thermisch stabilen und elektrisch neutralen<br />

VSi(N)4-Defektkomplexen vorgeschlagen.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!