09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Magnetismus Donnerstag<br />

MA 19 Hauptvortrag Tilgner<br />

Zeit: Donnerstag 09:30–10:00 Raum: H10<br />

Hauptvortrag MA 19.1 Do 09:30 H10<br />

Magnetic field generation in planets and laboratory dynamos —<br />

•Andreas Tilgner — Institut für Geophysik, Universität Göttingen,<br />

Herzberger Landstr. 180, 37075 Göttingen<br />

Most celestial bodies (the sun, most planets, stars and galaxies) generate<br />

a large scale magnetic field by converting mechanical into magnetic<br />

energy. In such a “dynamo process” electric currents are generated inside<br />

a moving conductor which in turn create a magnetic field. In commercial<br />

dynamos in use in cars or on bicycles, these currents flow inside especially<br />

designed coils. In the earth however, the currents responsible for<br />

the magnetic field flow in the liquid conductor (mostly iron) constitut-<br />

MA 20 Magnetische dünne Schichten II<br />

ing the core, which is spherical, devoid of electric structure and acts like<br />

a massive short circuit. It was therefore disputed until the late 1950’s<br />

whether the earth is capable of dynamo action. Doubts have been removed<br />

on a theoretical basis and an experiment has demonstrated the<br />

dynamo effect on a laboratory scale with a flow qualitatively resembling<br />

the flow believed to exist in the core. Insights into the flow actually<br />

realized in the core may be gained from numerical simulations, whereas<br />

observations of the variations of the earth’s magnetic field allow to determine<br />

the velocity at the boundary between the core and the electrically<br />

insulating, solid mantle. We do not know yet what is driving the core<br />

flow. The most probable mechanism is convection, but the precession of<br />

the earth’s axis of rotation may also play a role.<br />

Zeit: Donnerstag 10:15–13:00 Raum: H10<br />

MA 20.1 Do 10:15 H10<br />

Magnetic properties of cobalt thin films grown on Ni3Al(001)<br />

— •Stella Maris Van Eek, Ioan Costina, Vitali Podgurski,<br />

and René Franchy — Institut of Thin Films and Interfaces (ISG 3),<br />

Forschungszentrum Juelich GmbH, D 52425 Juelich, Germany<br />

The growth and the magnetic properties of thin cobalt films on<br />

Ni3Al(001) at 300 K were investigated using Auger spectroscopy, low<br />

energy electron diffraction, scanning tunneling microscopy and magneto<br />

optic Kerr effect (MOKE). Hysteresis loops of the Co layer were seen<br />

with MOKE in situ. The Co films were prepared with thicknesses from<br />

1.8 ML to 8 ML and all were ferromagnetic at room temperature. The<br />

coercivity of the Co film increased with deposited material up to 5 ML<br />

and then decreased very slowly. We picked up a thickness of each one<br />

of these two regions: 3 ML and 7 ML to investigate the magnetic properties.<br />

At room temperature Co(001) grows fcc epitaxially due to the<br />

small misfit between the lattice constant of fcc-Co and Ni3Al and forms<br />

two-dimensional islands. Annealing up to 700 K did not show interdiffusion<br />

but a coalescence and a flatening of the Co islands. The coercivity<br />

field increased with annealing at 700 K, for example the coercivity of<br />

the 7 ML Co sample showed an increase from 32(2) Oe to 43(2) Oe. For<br />

the 3 and 7 ML Co samples the evolution of the magnetic properties<br />

was investigated with the temperature. The magnetic ordering temperature<br />

values for the different thicknesses are reduced compared to the<br />

bulk one, this was explained with the scaling theory, which predicts a<br />

weakened magnetic order at the surface.<br />

MA 20.2 Do 10:30 H10<br />

Absorptionsfeinstruktur an den L2,3 Kanten der leichten 3d<br />

Übergangsmetalle — •A. Scherz, H. Wende, C. Sorg, K. Baberschke<br />

und E.K.U. Gross — Fachbereich Physik, Freie Universität<br />

Berlin, Arnimallee 14, 14195 Berlin-Dahlem, Germany<br />

Eine systematische Studie des magnetischen Zirkulardichroismus (XM-<br />

CD) leichter 3d Übergangsmetalle (TM’s) ist an Fe/TM/Fe(110) Dreilagen<br />

durchgeführt worden. Im Gegensatz zu den schweren 3d TM’s weisen<br />

die XMCD-Spektren eine Vielzahl von Absorptionsfeinstrukturen auf. Es<br />

ist bekannt, daß Korrelationseffekte mit dem Rumpfloch die spektrale<br />

Verteilung der L2,3 Kanten in den isotropen Absorptionsspektren (XAS)<br />

beeinflussen. Dennoch besteht bislang keine umfassende theoretische Beschreibung<br />

der Rumpflocheffekte in Absorptionsspektren entlang der 3d<br />

Reihe für den Festkörper. Ein einfaches Modell wurde erarbeitet, welches<br />

es ermöglicht, die Korrelationsenergien aus den experimentellen XAS-<br />

Spektren zu bestimmen. In Verbindung mit der Analyse der XMCD-<br />

Spektren kann direkt gezeigt werden, daß die gewohnte Anwendung der<br />

Summenregeln zur Bestimmung von Spin- und Bahnmomenten, µS und<br />

µL, aufgrund dieser Korrelationseffekte für die leichten 3d TM’s versagt.<br />

Eine alternative Herangehensweise zur Bestimmung von µS und µL, die<br />

die spektrale Linienform des XMCD analysiert, wird daher vorgeschlagen.<br />

Die Ergebnisse der systematischen Studie erlauben einerseits eine<br />

Abschätzung der magnetischen Momente aus experimentellen Daten als<br />

auch andererseits eine Überprüfung zukünftiger Theoriemodelle, die die<br />

Rumpflocheffekte in Absorptionsspektren von magnetischen Festkörpern<br />

beschreiben. Gefördert durch das BMBF (05KS1 KEB4).<br />

MA 20.3 Do 10:45 H10<br />

MODIFICATION OF THE SPIN DENSITY WAVE OF CR<br />

IN FE/CR MULTILAYERS BY INSERTION OF SN — •D.<br />

Lott 1 , D. Solina 1 , M. Almokhtar 2 , K. Mibu 3 , W. Schmidt 4 ,<br />

and A. Schreyer 1 — 1 GKSS Research Center, Geesthacht, Germany<br />

— 2 Physics Department, Assiut University, Egypt — 3 Research Center<br />

for Low Temperature and Materials Sciences, Kyoto University, Japan<br />

— 4 Institut Laue Langevin, Grenoble, France<br />

Recently, the SDW behavior of Cr in Fe/Cr/Sn/Cr multilayers were<br />

studied by Moessbauer spectroscopy. The monolayer (ML) of Sn inserted<br />

into the Cr layers serves as a Moessbauer probe permitting the<br />

study of the magnetic local environment around Sn providing details<br />

about of the magnetic stucture of Cr. In this work, complimentary<br />

neutron diffraction studies were carried out on a set of Fe/Cr(t) and<br />

Fe/Cr(t/2)/Sn(2˚A)/Cr(t/2) multilayers with t=80˚Aand t=160˚A. The<br />

magnetic order of the Cr layers was examined, systematically comparing<br />

the systems with and without Sn inserted in the Cr layers. The multilayers<br />

with Sn show major changes with additional asymmetric modulations<br />

in the diffraction spectra along (00L). Even more dramatic are the<br />

changes for the Fe/Cr/Sn/Cr sample with t=80˚A. Instead of a CSDW<br />

to ISDW transition with increasing T as seen in the sample without Sn,<br />

a dominant CSDW component is observed at low T transforming into a<br />

ISDW phase with higher T. Measurements and evaluations clearly show<br />

that the general SDW behavior of the Cr layers in Fe/Cr multilayers are<br />

changed drastically by insertion of Sn allowing to tailor the magnetic<br />

properties of the Fe/Cr system in a new way.<br />

MA 20.4 Do 11:00 H10<br />

Temperature-dependent magnetotransport measurements of<br />

epitaxial Fe/Cr/Fe systems with antiferromagnetic interlayer<br />

coupling — •Matthias Buchmeier, Michael Breidbach,<br />

Henning Dassow, Daniel E. Bürgler, and Peter Grünberg<br />

— Institut für Festkörperforschung, Forschungszentrum Jülich GmbH,<br />

52425 Jülich<br />

We have prepared epitaxial Fe/Cr/Fe trilayers with antiferromagnetic<br />

interlayer coupling on an Au(001)/GaAs(001) buffer-system. Lithographically<br />

patterned thin stripes are characterized by current-in-plane magnetoresistance<br />

(CIP-MR) measurements, for which the magnitude as well<br />

as the in-plane direction of the external magnetic field are swept. The<br />

temperature dependence (4–270 K) of the in-plane anisotropy, the interlayer<br />

exchange coupling, and the giant and anisotropic magnetoresistance<br />

(GMR and AMR) are quantitatively determined by simultaneously fitting<br />

the angular and field dependence of the MR curves. The experimental<br />

curves are nicely reproduced within a single domain model including fourfold<br />

magnetocrystalline anisotropy and bilinear and biquadratic coupling<br />

terms for temperatures above 50 K. Below 50 K, however, we observe an<br />

anomaly which can be interpreted as an exchange bias (EB) effect with<br />

an exchange anisotropy of the order of 5 mT. Possible origins for the<br />

appearance of EB is a paramagnet-antiferromagnet phase transition of<br />

the Cr spacer or an Fe-oxide layer on top of the uncapped sample with<br />

a thickness of approximately 1 nm as determined by X-ray scattering.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!