09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Halbleiterphysik Montag<br />

up a so called colloidal crystal. These crystals are also known as opals.<br />

Mankind has developed further methods to invert opals by filling up the<br />

space around the spheres with another material and expunge the spheres.<br />

HL 7 Hauptvortrag Stangl<br />

By means of new research results on fireopals, we will show first principles<br />

of tuneable photonic crystals and we will also extend these to inverted<br />

opals which are made of titanium dioxide.<br />

Zeit: Montag 14:30–15:15 Raum: H15<br />

Hauptvortrag HL 7.1 Mo 14:30 H15<br />

Structural properties of semiconductor nanostructures from<br />

x-ray scattering — •Julian Stangl 1 , Anke Hesse 1 , Vaclav<br />

Holy 1,2 , Rainer T. Lechner 1 , Tomas Roch 1 , Mojmir Meduna 1 ,<br />

Zhenyang Zhong 1 , and Günther Bauer 1 — 1 Instut für Halbleiterund<br />

Festkörperphysik, Johannes Kepler Universität Linz, Altenbergerstr.<br />

69, A-4040 Linz, Austria — 2 Department of Condensed Matter Physics,<br />

Faculty of Science, Masaryk University, Kotláˇrská 2, 611 37 Brno, Czech<br />

Republic<br />

New device concepts and the possibility to realize simple quantum<br />

mechanical systems drive the interest in semiconductor nanostructures.<br />

In structures smaller than the DeBroglie wavelength of carriers, typi-<br />

HL 8 Photonische Kristalle II<br />

cally several nm, quantum confinement strongly influences the electronic<br />

properties. The latter depend on size, shape, chemical composition and<br />

strain distribution, which again vary with growth conditions. In order to<br />

understand and control nanostructure growth, their structural properties<br />

have to be determined. X-ray diffraction allows for the non-destructive<br />

investigation of uncapped and buried structures, which are needed for<br />

application.<br />

The talk will present different scattering techniques sensitive to shape,<br />

composition and strain of nanostructures. Results will be presented on<br />

the shape and positional correlation of SiGe islands in superlattices, and<br />

on the composition and strain profile in self-assembled SiGe islands. The<br />

effect of capping on has been studied as well.<br />

Zeit: Montag 15:15–16:30 Raum: H15<br />

HL 8.1 Mo 15:15 H15<br />

Microwave resonators for the optical detection of magnetic resonance<br />

on the basis of photonic crystals — •M. Wanjek, E.<br />

Waldmueller, and S. Greulich-Weber — University of Paderborn,<br />

Fakulty of Science, Physics Department, D-33098 Paderbron, Germany<br />

Electron paramagnetic resonance (EPR) is an important tool for the<br />

study of the microscopic and electronic structure of defects in solids. Via<br />

the optical detection of magnetic resonance(ODMR) the optical properties<br />

of a defect can be related to its microscopic structure. Since today<br />

often only small samples are available (e.g. epi layers) the sensitivity of<br />

EPR has to be increased. In this regard efforts have been made to use high<br />

frequencies, e.g. measuring EPR at 95 GHz instead of 9.5 GHz. Usually<br />

EPR is measured using a microwave bridge with a microwave resonator<br />

containing the sample. At low frequencies cylindrical or rectangular resonators<br />

are used providing also sufficient space for field modulation coils.<br />

At high frequencies the resonator becomes considerably smaller supplying<br />

no space for field coils. External field coils would be shielded by the<br />

metallic resonator itself. Furthermore for ODMR optical access to the<br />

sample is needed, which can not be realized with usual resonators. High<br />

frequency microwave resonator designs fitting to all requirements will be<br />

presented on the basis of photonic crystals.<br />

HL 8.2 Mo 15:30 H15<br />

Doping of colloidal photonic crystals — Bettina Friedel 1 ,<br />

Siegmund Greulich-Weber 1 , Carsten Blum 2 , Heinrich<br />

Marsmann 2 , •Bettina Friedel 1 , Siegmund Greulich-Weber 1 ,<br />

Carsten B lum 2 , and Heinrich Marsmann 2 — 1 Fakultaet fuer<br />

Naturwissenschaften, Department Physik, Universitaet Paderborn,<br />

Warburger Str. 100, DE-33098 Paderborn — 2 Fakultaet fuer Naturwissenschaften,<br />

Department Chemie, Universitaet Paderborn, Warburger<br />

Str. 100, DE-33098 Paderborn<br />

Photonic crystals based on colloidal crystals grown from monodisperse<br />

spherical silica particles have received considerable attention in the recent<br />

years. To increase the relatively low refraction index contrast concerning<br />

to air, many different techniques were proposed: for example coating the<br />

silica spheres with dyes or doping with II-VI compound semiconductors.<br />

For the implementation of photonic devices, like optical waveguides<br />

or microcavities, it is necessary to change the refractive index of single<br />

spheres in order to create point and line defects in the colloidal crystal.<br />

Procedures are presented which allow a local doping of photonic crystals<br />

using established silicon technology. Basic results on doping possibilities<br />

and change of the optical properties are given.<br />

HL 8.3 Mo 15:45 H15<br />

Photonic crystal templates based on holographic lithography<br />

working in a wide spectral range — •C. Enkrich 1,2 , A. Blanco 1,3 ,<br />

K. Busch 4,2 , and M. Wegener 1,3,2 — 1 Institut für Angewandte Physik,<br />

Universität Karlsruhe (TH), 76128 Karlsruhe — 2 DFG-Center for Functional<br />

Nanostructures, Universität Karlsruhe (TH), 76131 Karlsruhe<br />

— 3 Institut für Nanotechnologie, Forschungszentrum Karlsruhe in der<br />

Helmholtz-Gemeinschaft, 76021 Karlsruhe — 4 Institut für Theorie der<br />

Kondensierten Materie, Universität Karlsruhe (TH), 76128 Karlsruhe<br />

The fabrication of three-dimensional photonic crystals is a major challenge<br />

in materials science, especially when the periodicity lies in the optical<br />

region [1]. Here we present a flexible method based on holographic<br />

lithography [2] to fabricate photonic crystal templates. By interference<br />

of four laser beams it is possible to create 3D microporous structures in<br />

a photosensitive resin (SU-8) arranged in an fcc lattice with the periodicity<br />

in the submicron region [3]. By changing experimental parameters<br />

it is possible to tune their photonic properties. We show that the polymer<br />

filling fraction can be varied from around 20% to 80% producing<br />

photonic gaps covering a wide spectral range from the visible to the near<br />

infrared. Comparison with theoretical calculations allows to optimize the<br />

design and therefore the photonic properties. These structures can be<br />

used as templates in which materials with a high dielectric constant can<br />

be infiltrated to produce full photonic band gap crystals.<br />

[1] For a recent review see C. Lopez, Adv. Mater. 15, 1679 (2003).<br />

[2] M. Campbell et al., Nature 404, 53 (2000).<br />

[3] Yu. V. Miklyaev et al., Appl. Phys. Lett. 82, 1284 (2003).<br />

HL 8.4 Mo 16:00 H15<br />

Nahfeldtransmissionsspektroskopie an 1-D metallischen Photonischen<br />

Kristallen — •N. Rau 1 , U. Neuberth 1 , S. Linden 1 , M.<br />

Wegener 1 , A. Christ 2 , J. Kuhl 2 , S. Pereira 3 und K. Busch 3<br />

— 1 Institut für Angewandte Physik, Universität Karlsruhe (TH), 76128<br />

Karlsruhe — 2 Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart<br />

— 3 Institut für Theorie der Kondensierten Materie, Universität<br />

Karlsruhe (TH), 76128 Karlsruhe<br />

Wir stellen Nahfeldtransmissionsexperimente an periodischen 1D-<br />

Gold-Nanodrahtstrukturen auf einem dielektrischen Wellenleiter vor. Die<br />

Probe wird über eine Linse mit linear polarisiertem Weißlicht beleuchtet.<br />

Das transmittierte Licht wird über eine Apertursonde aufgesammelt<br />

und anschließend mit einem Monochromator und einer CCD-Kamera<br />

spektral aufgelöst. Als Sonde werden geätzte Al-bedampte Glasfasern<br />

mit ca. 75nm kleinen Aperturen verwendet, die eine Ortsauflösung von<br />

ca. 100nm ermöglichen. In den orts- und spektral aufgelösten Transmissionsdaten<br />

können perioden- und polarisationsabhängige Effekte mit<br />

feinskaligen Strukturen und hohem Kontrast beobachtet werden. Diese<br />

lassen sich abhängig von der Polarisationsrichtung auf die Anregung von<br />

Wellenleitermoden bzw. des Partikelplasmon-Wellenleiter-Polaritons[1]<br />

zurückführen. Die Ergebnisse werden mit numerischen Simulationen

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!