09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Halbleiterphysik Dienstag<br />

During the silanization process, hydroxyl groups which are formed on<br />

oxidic surfaces and act as covalent coupling sites for alkylsilane have<br />

to be provided. Thermally and chemically oxidized AlGaN surfaces are<br />

compared with respect to their efficiency in the silanization process. We<br />

have applied X-ray photoelectron spectroscopy (XPS) and contact angle<br />

measurements to characterize the SAM formation and to investigate the<br />

properties (coverage, hydrophobicity) of the functionalized layer.<br />

HL 16.6 Di 11:30 H13<br />

Improvement of GaN Schottky Diodes by Thermal Oxidation<br />

— •Olaf Weidemann 1 , Eva Monroy 2 , Eike Hahn 3 , Martin Hermann<br />

1 , Edgar Zaus 1 , Martin Stutzmann 1 , and Martin Eickhoff<br />

1 — 1 Walter Schottky Institut, TU München, 85748 Garching —<br />

2 CEA-CNRS-UJF Nanophysique et Semiconducteurs, CEA-Grenoble,<br />

38054 Grenoble, France — 3 Laboratorium für Elektronenmikroskopie,<br />

Universität Karlsruhe, 76128 Karlsruhe<br />

GaN Schottky contacts have gathered increasing interest for the application<br />

as UV detectors and, more recently, as high temperature gas<br />

sensitive devices and GasFETs with catalytic Schottky contacts. However,<br />

Schottky contacts on GaN suffer from high reverse currents due to<br />

the presence of threading dislocations. To improve the device characteristics<br />

and to guarantee reproducible electronic properties, a passivation<br />

of these defects is desirable.<br />

We have investigated the effect of thermal oxidation on the electronic<br />

characteristics of Schottky contacts on heteroepitaxial n- and p-type GaN<br />

layers grown by plasma assisted molecular beam epitaxy. Thermal oxidation<br />

was found to lead to significant device improvement, notably a<br />

decrease in reverse leakage current and an enhanced rectification ratio,<br />

which has been quantified by IV- and CV-measurements. Analysis of the<br />

oxidized layers by TEM and AFM revealed that preferential oxidation<br />

at crystal defects is the dominating mechanism for the observed device<br />

improvement.<br />

HL 16.7 Di 11:45 H13<br />

AlGaN/GaN Field Effect Transistors for Chemical and Biological<br />

Sensor Applications — •Georg Steinhoff, Barbara<br />

Baur, Martin Hermann, Martin Stutzmann, and Martin Eickhoff<br />

— Walter Schottky Institut, Technische Universität München, Am<br />

Coulombwall 3, 85748 Garching<br />

Field effect transistors based on AlGaN/GaN heterostructures are of<br />

great interest for chemical and biochemical sensor applications. The electrical<br />

properties of the polarization induced 2DEG, which is formed at the<br />

AlGaN/GaN heterointerface are highly sensitive to changes in the surface<br />

potential. Additionally, the device surface is chemically inert in aqueous<br />

solutions and non-toxic to living cells. We have studied the response<br />

of nonmetallized gate regions of AlGaN/GaN transistors and transistor<br />

arrays to changes in the concentration of specific ions in the ambient electrolyte.<br />

The potential drop at the interface between the gate surface and<br />

the electrolyte solution was measured and used as a sensor signal. A linear<br />

sensor response of approximately 55 mV/pH was found for variations<br />

in the H + -concentration between 10 -1 and 10 -13 mol/l, which is close to<br />

the theoretical Nernst limit, determined by the native oxide layer present<br />

on the surface. Sensitivity towards Na + , K + , Ca 2+ and Cl – -ions and long<br />

term stability of the transistor devices in aqueous solutions were also investigated.<br />

As a first biophysical application of these sensors we discuss<br />

the detection and analysis of ionic signals of cells cultivated directly on<br />

the device surface.<br />

HL 16.8 Di 12:00 H13<br />

Optimized Specific Contact Resistance of p-GaN — •Jens Dennemarck<br />

1 , Tim Böttcher 1 , Detlef Hommel 1 und Anna Piotrowska<br />

2 — 1 Institute of Solid State Physics, University of Bremen, D-<br />

28359 Bremen — 2 Institute of Electron Technology, Al. Lotnikow 32/46,<br />

02-668 Warsaw, Poland<br />

Nowadays GaN-based high performance devices are available, which<br />

needs high current densities during operation. For example, a GaN-based<br />

laser diode needs a current density in the range of some 1 kA/cm 2 . To<br />

operate devices reliable with such high driving conditions, ohmic contacts<br />

with quite low specific contact resistances are necessary.<br />

In the case of p-type GaN a metal with a large work function is necessary.<br />

Then the difference between vacuum and Fermi level is large,<br />

that holes can get into the metal without a barrier.<br />

Two approaches were performed to reduce the specific contact resistance:<br />

first a highly doped cap layer with a thickness of 15nm was added.<br />

This should increase the number of acceptor levels with the effect of a<br />

decreased barrier height. The second approach was a InGaN subcontact<br />

layer about 20 nm. In respect of the induced strain the thickness of the<br />

barrier decreased. To measure the specific contact resistance, the transfer<br />

length method (TLM) was used. The problems of this measurement are<br />

current spreading and current crowding. The cTLM method (circular<br />

TLM) was considered to be the better method.<br />

A number of metallization with different work functions were applied.<br />

The best results were achieved by Pd/Au contacts with a specific contact<br />

resistance of 1-2*10-5 A/cm 2 .<br />

HL 16.9 Di 12:15 H13<br />

Heat Dissipation in GaN LEDs and LDs - Simulation and<br />

Experiment — •Stephan Figge 1 , Tim Böttcher 1 , Sven<br />

Einfeldt 1 , Detlef Hommel 1 , Christoph Zellweger 2 , Mark<br />

Ilegems 2 , Patrick Waltereit 3 , and James Speck 3 — 1 Institut<br />

für Festkörperphysik, Universität Bremen — 2 Institut de photonique et<br />

d’electronique quantiques, Ecole Polytechnique Federale de Lausanne<br />

— 3 The Interdisciplinary Center for Wide Band-Gap Semiconductors,<br />

University of California, Santa Barbara<br />

The heating due to joule heat plays an important role in the device<br />

characteristics of high power GaN light emitting diodes (LEDs) and laser<br />

diodes (LDs). In this talk we will show two and three dimensional finite<br />

elements calculations on the heat dissipation in LEDs and LDs and will<br />

compare them with experiential results taken from devices grown on sapphire<br />

substrates. The data of the simulations are in excellent agreement<br />

with the experiential data such as the wavelength shift and the dependence<br />

of output power taken from devices in DC and pulsed operation.<br />

The talk will discuss the influence of the duty cycle and the pulse parameters<br />

on the heating within the active region. In addition the dependence<br />

of the thermal resistance on the device geometry (layer thicknesses, die<br />

size, substrate material) will be shown.<br />

HL 16.10 Di 12:30 H13<br />

In,Ga,Al,N-Wellenleiter- und Laserstrukturen im blauen Spektralbereich<br />

auf Si-Substraten — •Andre Strittmatter, Lars<br />

Reissmann und Dieter Bimberg — Technische Universität Berlin,<br />

Institut für Festköerperphysik, Sekr. PN 5-2, Hardenbergstr. 36, 10623<br />

Berlin<br />

Mittels Transfermatrizen und Lösung der Modengleichung wurden aus<br />

epitaktischer Sicht realisierbare In,Ga,Al,N-Wellenleiterstrukturen auf<br />

Si-Substraten für den Wellenlängenbereich 400-460 nm untersucht. Es<br />

zeigt sich, dass bei geeigneter Dimensionierung einer GaN-Pufferschicht<br />

und der AlGaN-Mantelschichten auch Fundamentalmoden innerhalb des<br />

Wellenleiterkerns geführt werden. Dies ist zunächst überraschend, da der<br />

Realteil des Brechungsindexes des Si-Substrats im interessierenden Spektralbereich<br />

deutlich über den Brechungsindizes der Nitrid-Schichten liegt.<br />

Die Modellierungen ergeben jedoch, daß gerade die absorbierenden Eigenschaften<br />

des Si zu der gewünschten Wellenführung beitragen. Des weiteren<br />

sind auch die bisher beim Wachstum rissfreier Nitridschichten unverzichtbaren<br />

AlN-Zwischenschichten für die Führung der optischen Mode<br />

vorteilhaft, da sie zu einer Reduktion der Eindringtiefe der optischen Mode<br />

in die Mantelschichten führen. Ausgehend von diesen Erkenntnissen<br />

präsentieren wir den Aufbau von Laserdioden auf Si-Substraten bei einer<br />

Wellenlänge von 460 nm, die bei einer Gesamtdicke von 1.4-1.6 mum mit<br />

nur 2-3 AlN-Zwischenschichten im n-dotierten Bereich der Diodenstruktur<br />

realisiert wurden.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!