09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Arbeitskreis Biologische Physik Donnerstag<br />

AKB 41 Cell Signaling<br />

Zeit: Donnerstag 17:00–18:00 Raum: H40<br />

Hauptvortrag AKB 41.1 Do 17:00 H40<br />

Identification of Sensory Transduction Chains in vivo —<br />

•Andreas Herz and Tim Gollisch — Institute for Theoretical<br />

Biology, Humboldt University Berlin, Invalidenstrasse 43, 10115 Berlin<br />

Every sensation begins with the conversion of a sensory stimulus into<br />

the response of a receptor neuron. Typically, this involves a multi-step<br />

sequence of multiple biophysical processes that cannot all be monitored<br />

directly. Here we present a method that makes it possible to extract their<br />

dynamical features by comparing different stimuli that cause the same<br />

output, the only signal to be measured. Applied to auditory receptor<br />

cells, this novel technique reveals sub-millisecond details of mechanosensory<br />

signal processing and yields a quantitative four-step signal transduction<br />

model. Owing to its simplicity and generality, the method is readily<br />

applicable to a large variety of signal-processing systems.<br />

Hauptvortrag AKB 41.2 Do 17:30 H40<br />

Intracellular Ca 2+ Dynamics — •Martin Falcke — Hahn Meitner<br />

Institut, SF5, Glienicker Str. 100, 14109 Berlin<br />

AKB 50 Poster Session ”Biological Physics”<br />

Ca 2+ is an important messenger in living cells. Intracellular Ca 2+ dynamics<br />

is a pattern forming system showing a rich variety of phenomena.<br />

The transition from a regime dominated by random local events to global<br />

events like waves and oscillations can be observed. Fluorescent dyes<br />

allow for observation of elemental events underlying global patterns at<br />

the same time as the global pattern itself. That opens the unique possibility<br />

to study the built up of global events from elemental random local<br />

events. The transition from a fluctuation dominated regime to a more<br />

deterministic behavior is accompanied by a transition from behavior determined<br />

by spatial discreteness to a continuous medium. As a continuous<br />

medium, intracellular Ca 2+ dynamics shows novel phenomena like e.g. a<br />

gap of forbidden velocities in the dispersion relation. The talk gives an<br />

introduction to Ca 2+ dynamics and its theoretical desription.<br />

Zeit: Freitag 10:30–13:00 Raum: B<br />

AKB 50.1 Fr 10:30 B<br />

Spatial discreteness and stability of reaction-diffusion systems<br />

— •Rüdiger Thul and Martin Falcke — Hahn-Meitner Institut,<br />

Abteilung Theorie, Glienicker Strasse 100, 14109 Berlin<br />

We present a novel approach to the dynamics of spatially discrete<br />

reaction-diffusion equations. The approach addresses systems with active<br />

regions on the submicrometer length scale arranged with distances<br />

of a few micrometers. The size of the active region is determined by the<br />

production of the diffusing substance. The linear stability analysis reveals<br />

that due to spatial discreteness, diffusion becomes one of the major<br />

determinants of the stability of the reaction dynamics. We illustrate this<br />

new approach with Ca 2+ dynamics.<br />

AKB 50.2 Fr 10:30 B<br />

Modelling regulatory genetic system as random boolean network<br />

— •Viktor Kaufman — AG Drossel, Hochschulstraße 6, 64289<br />

Darmstadt<br />

Recent results on the dynamical behaviour of critical random boolean<br />

networks (RBN) have superseded those obtained more than 30 years ago.<br />

There is now evidence that the mean attractor number and length grow<br />

exponentially with the network size. This work contributes to the understanding<br />

of those findings by means of examining the size and topology<br />

of the relevant part of the network, using analytical arguments and computer<br />

simulations.<br />

AKB 50.3 Fr 10:30 B<br />

Elektrische Stimulation von neuronalen Netzwerken über ein<br />

strukturiertes Elektrodeninterface — •A. Reiher 1 , A. Krtschil 1 ,<br />

S. Günther 1 , H. Witte 1 , A. Krost 1 , A. de Lima 2 , T. Opitz 2 ,<br />

T. Voigt 2 , K. Kube 3 , V. Spravedlyvyy 3 , A. Herzog 3 und B.<br />

Michaelis 3 — 1 Institut für Experimentelle Physik, OvG-Universität<br />

Magdeburg — 2 Institut für Physiologie, OvG-Universität Magdeburg —<br />

3 Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik<br />

(IESK), OvG-Universität Magdeburg, PF 4120, 39016 Magdeburg<br />

Es ist bekannt, dass Nervenzellen aus dem Cortex von embryonalen<br />

Ratten in vitro komplexe, neuronale Netzwerke ausbilden. Für dieses<br />

System wurde ein in die Kultur integriertes Interface entwickelt, um eine<br />

Kommunikation mit den Neuronen zu ermöglichen.<br />

Dieses besteht aus einer planaren Fingerstruktur von Mikro-Gold-<br />

Elektroden auf einer Titanhaftschicht, über die eine elektrische Stimulation<br />

von Nervenzellen, d.h. eine induzierte Generation von Aktionspotenzialen,<br />

realisiert wird. Um Aussagen über die erforderlichen Grössen<br />

der Anregungen zu erhalten, wurden elektrische Stimuli systematisch hinsichtlich<br />

Pulsdauer, -höhe und -anzahl variiert. Die Analyse der stimulierten<br />

Netzwerkaktivität er-folgte global mit Ca 2+ -Fluoreszenz-Aufnahmen<br />

bzw. lokal durch Patch-Clamp-Messungen. Parallel dazu wurde der Neu-<br />

ronenresponse über das Elektrodenarray elektrisch ausgelesen. Der Einfluss<br />

der einzelnen Stimulationsparameter auf die Netzwerkaktivität wird<br />

im Detail vorgestellt und mit den Ergebnissen von Simulationsrechnungen<br />

an biologisch realistischen neuronalen Netzwerken verglichen.<br />

AKB 50.4 Fr 10:30 B<br />

Modelling long-term evolution of food webs — •Satoshi Uchida<br />

and Barbara Drossel — Institut für Festkörperphysik, TU Darmstadt,<br />

Hochschulstr. 6, D-64289 Darmstadt, Germany<br />

The relation between the stability and complexity of ecosystems is<br />

much debated in the recent literature. An important theoretical approach<br />

to this issue consists in exploring mathematical models of food webs,<br />

which are networks constructed by prey-predator relationships in ecosystems.<br />

Using computer simulations, we study a model that does not only<br />

include Lotka-Volterra type population dynamics, but also a long-term<br />

change in the linkage pattern and composition of the foodweb due to<br />

species invasions and evolutionary change. We find that the foodweb becomes<br />

unstable and collapses after some time. We explain this finding and<br />

propose modified (and more realistic) population dynamics, for which the<br />

complex foodweb structure persists in time.<br />

AKB 50.5 Fr 10:30 B<br />

Elasticity of Two-Dimensional Stiff Polymer Networks —<br />

•Claus Heussinger and Erwin Frey — Hahn-Meitner Institut,<br />

Berlin<br />

We study the elasticity of two-dimensional networks of semiflexible<br />

polymers (”Mikado model”). The essential features incorporated into the<br />

model are the random geometry of the network and the anisotropic elasticity<br />

of its constituents.<br />

In a first study, the elements are modeled as purely mechanical Euler<br />

beams [1,2]. We show that there are three distinct scaling regimes,<br />

characterized by two characteristic length scales. In addition to a critical<br />

rigidity percolation region and a homogeneous elastic regime (dominated<br />

by beam compression) we find a novel intermediate scaling regime, where<br />

the elasticity of the network is dominated by bending deformations. The<br />

observations for the shear modulus can be rationalized by a crossover<br />

scaling ansatz that permits to collapse the data over eight orders of magnitude<br />

in the scaling variable.<br />

In a second step, effective elastic properties of semiflexible polymers<br />

are implemented to study the entropic contributions to the polymer compliance<br />

and its effects on the scaling behaviour.<br />

To get further insight into the nature of the force propagation, more<br />

complicated modes of deformation can be explored. As an example, we<br />

visualize force chains induced by the action of a microrheological probe.<br />

[1] J. Wilhelm and E. Frey PRL 91, 108103 (2003)<br />

[2] E. Frey, K. Kroy, J. Wilhelm and E. Sackmann, in Dynamical Net-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!