09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Metallphysik Dienstag<br />

M 18 Postersitzung<br />

Zeit: Dienstag 14:30–16:30 Raum: Saal C<br />

M 18.1 Di 14:30 Saal C<br />

Molecular dynamics study of local atomic structures in liquid<br />

metals — •Magnus Kreth and Peter Entel — Institut für Physik,<br />

Universität Duisburg-Essen, 47048 Duisburg<br />

In this work we study local atomic structures in liquid aluminum and<br />

iron using molecular dynamics simulations. Interatomic interactions are<br />

modelled using an embedded-atom method potential. Local atomic structures<br />

in the liquid are identified using a common-neighbor analysis. Static<br />

structure factors are calculated from the pair distribution function to<br />

compare our results with recent neutron diffraction experiments on liquid<br />

metals.<br />

M 18.2 Di 14:30 Saal C<br />

Elektronenmikroskopische Untersuchungen an Nd60Fe30Al10-<br />

Legierungen — •T. Niermann 1 , A. Bracchi 2 , M. Seibt 1 ,<br />

K. Samwer 2 und S. Schneider 1 — 1 IV. Physikalisches Institut<br />

der Universität Göttingen, Tammannstr. 1, 37077 Göttingen — 2 I.<br />

Physikalisches Institut der Universität Göttingen, Tammannstr. 1,<br />

37077 Göttingen<br />

Die Mikrostruktur von Nd60Fe30Al10-Proben wurde mittels hochauflösender<br />

Transmissionselektronenmikroskopie (HRTEM) und<br />

energiedispersiver Röntgenanalyse (EDX) untersucht, sowie die magnetischen<br />

Eigenschaften der Proben mit einem SQUID-Magnometer bei<br />

unterschiedlichen Temperaturen gemessen. Die untersuchten Proben<br />

wurden bei verschiedenen Abkühlraten hergestellt: dünne Schichten,<br />

schnell abgeschreckte Folien (Splat-Quenching) und massive Proben.<br />

Die TEM-Aufnahmen zeigen nanokristalline Nd-Ausscheidungen eingebettet<br />

in einer amorphen Matrix. Im Amorphen lassen sich außerdem<br />

zwei verschiedene Nahordnungen finden. Die bei der vorgefundenen Mikrostruktur<br />

zu erwartenden domain-wall-pinning Prozesse und die magnetische<br />

Kopplung zweier amorpher Phasen können das magnetische<br />

Verhalten erklären.<br />

Gefördert durch die DFG im Rahmen des SFB 602.<br />

M 18.3 Di 14:30 Saal C<br />

Tomographic atom probe (TAP) study of the chemical ordering<br />

in Zr60Ni25Al15 bulk amorphous alloy — •Ahmed Shariq,<br />

Talaat Al-Kassab, and Reiner Kirchheim — Institut fuer Materialphysik,<br />

Uni- Goettingen, Tammanstr.1,D- 37077, Goettingen, Germany<br />

Bulk amorphous alloys are advanced engineering materials owing to<br />

their excellent static and dynamic mechanical properties, wear properties,<br />

low coefficient of friction, magnetic properties and corrosion properties.<br />

The new amorphous alloys have much wider supercooled liquid region<br />

defined as the difference between crystallisation and glass transition temperatures<br />

which may extend up to 100K for some alloys. This wider range<br />

allows to explore the kinetics and thermodynamics in this region. The<br />

alloys with stabilized supercooled liquid state have three features in their<br />

alloy components i.e., multicomponent system, significant atomic size ratios<br />

above 12 percent and negative heat of mixing. Molecular-Dynamics<br />

(MD) simulations for a model Zr60Ni25Al15 ternary amorphous alloy<br />

already had shown two types of chemical short range ordering of Al and<br />

Ni sub systems. The 3D-tomographic atom probe (TAP) is proved to be<br />

currently the best experimental tool to gain experimental information<br />

on chemical heterogeneities at the atomic scale. The data from TAP has<br />

been used to elucidate the atomic distances among neighbouring atoms.<br />

The chemical short range ordering in the supercooled liquid region will<br />

be discussed on the basis of TAP results.<br />

M 18.4 Di 14:30 Saal C<br />

Dichte und Oberflächenspannung flüssiger Fe-Ni-Cu Legierungen<br />

— •Jürgen Brillo und Ivan Egry — Deutsches Zentrum für<br />

Luft- und Raumfahrt e.V., Institut für Raumsimulation, 51147 Köln<br />

Es werden Messungen der Dichte und Oberflächenspannung an den<br />

flüssigen Legierungssystemen Nickel-Eisen, Kupfer-Nickel und Kupfer-<br />

Eisen vorgestellt. Die Messungen werden mit Hilfe der elektromagnetischen<br />

Levitation sowohl bei Temperaturen oberhalb wie unterhalb des<br />

Schmelzpunktes durchgeführt. Die Oberflächenspannung wird mit der<br />

Methode des schwingenden Tropfens aus den Frequenzen der Oberflächenschwingungen<br />

bestimmt. Die Dichte folgt aus einer Volumenbestimmung<br />

des levitierten Tropfens. Die Messergebnisse werden anhand<br />

von Modellen diskutiert. Es zeigen sich charakteristische Unterschiede<br />

zwischen den drei binären Legierungssystemen.<br />

M 18.5 Di 14:30 Saal C<br />

Phase-field Simulations of Dendritic Patterns in Solidification<br />

of a Pure Substance — •Denis Danilov 1 , Britta Nestler 1 , and<br />

Peter Galenko 2 — 1 University of Applied Sciences Karlsruhe, Germany<br />

— 2 Institute for Space Simulation, DLR, Cologne, Germany<br />

We present a critical analysis of the existing phase-field models of<br />

solidification patterns in pure substances. For comparison of the predictions<br />

and asymptotic solutions, we apply the phase-field model recently<br />

developed by Garcke, Nestler, Stinner [2] including the ”thininterface”analytical<br />

results by Karma et al. [1]. The model equations<br />

describing are numerically solved using two different methods: A finitedifference<br />

discretization and an adaptive finite-element method. Simulation<br />

results of solidifying 2D and 3D dendritic morphologies are presented.<br />

The numerical methods are examined with respect to the influence<br />

of grid anisotropy and computational efficiency. The phase-field<br />

model predictions of the tip radius and velocity for different undercoolings<br />

are compared with the analytical model of Brener [3] and with new<br />

experimental results of solidified nickel dendrites by Funke et al. [4].<br />

[1] A. Karma and W.-J. Rappel, Physical Review E 53 (1996) R3017 and<br />

Physical Review E 60 (1999) 3614<br />

[2] H. Garcke, B. Nestler und B. Stinner, SIAM J. on Appl. Math., in<br />

print<br />

[3] E. Brener, J. Cryst. Growth 99 (1990) 165<br />

[4] O. Funke, G. Phanikumar, P.K. Galenko, M. Kolbe, D.M. Herlach,<br />

Physical Review E (2004) submitted<br />

M 18.6 Di 14:30 Saal C<br />

Phase-field modeling of stress-induced instabilities during directional<br />

solidification of a binary alloy — •Bo Liu and Klaus Kassner<br />

— Institut für Theoretische Physik, Otto-von Guericke-Universität<br />

Magdeburg<br />

A phase-field approach is developed to investigate the effect of elastic<br />

stresses on the morphological instability during directional solidification<br />

of a binary alloy. Governing equations are developed to simulate<br />

microstructural pattern formation based on a combination of the quantitative<br />

model for alloy solidification by Karma (Phys. Rev. Lett. 87,<br />

115701 (2001)) and the model for the Grinfeld instability by Kassner et<br />

al. (Phys. Rev. E 63, 036117 (2001)). Simulations in two dimensions are<br />

carried out to test the accuracy of the present model and its numerical<br />

utility by reproducing some known results. We then proceed to investigate<br />

the combined effects of thermal and compositional strains as well as<br />

experimental control parameters on the morphological instability.<br />

M 18.7 Di 14:30 Saal C<br />

A relativistic description for the positron annihilation in solids<br />

— •Diana Benea 1 , Zsuzsanna Major 2 , and Hubert Ebert 1 —<br />

1 Department Chemie / Physikalische Chemie, Universität München, Butenandstr.<br />

5-13, D-81377 München, Germany — 2 H. H. Wills Physics<br />

Laboratory, University of Bristol, Tyndall Avenue, BS8 1TL Bristol, UK<br />

A fully relativistic formulation for the of spin resolved momentum<br />

density is presented together with a corresponding scheme to determine<br />

the two dimensional projection of the electron-positron momentum<br />

density for metals. This formalism is set up within the framework of<br />

spin-polarised relativistic Korringa-Kohn-Rostoker (SPR-KKR) method<br />

of bandstructure calculations. The resulting two dimensional projection<br />

of the electron-positron momentum density is usually identified with the<br />

two-dimensional angular correlation of the annihilation radiation (2D-<br />

ACAR) experimental spectra. Various two dimensional projections of<br />

the electron-positron momentum density of vanadium are presented and<br />

compared with nonrelativistic LMTO calculation and experimental data.<br />

M 18.8 Di 14:30 Saal C<br />

Phase formation by interfacial reactions in the BaO - TiO2 system<br />

— •Andreas Graff, Stephan Senz, and Dietrich Hesse —<br />

Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany<br />

Model experiments concerning phase formation during BaTiO3 genesis<br />

by interfacial reactions in ceramics were performed to identify the<br />

reaction mechanism. Reaction products between BaO vapour and ru-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!