09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Arbeitskreis Biologische Physik Freitag<br />

mined. Moreover, the blinking mechanism of water soluble QDs has not<br />

yet been systematically studied. In this work we present the study of single<br />

CdSe/ZnS QDs by means of Total Internal Reflection Fluorescence<br />

Microscopy (TIRFM). A comparison in blinking behavior of QDs with<br />

organic soluble Tri-n-octylphosphine oxide (TOPO) and water soluble<br />

mercaptoundecanoic acid (MUA) shells is performed.<br />

AKB 50.13 Fr 10:30 B<br />

Artificial actin cortices on microfabricated pillar arrays —<br />

•Wouter Roos 1 , Alexander Roth 2 , Roman Glass 1 , Erich<br />

Sackmann 2 , and Joachim P. Spatz 1 — 1 Universitaet Heidelberg,<br />

Institut fuer physikalische Chemie, Biophysikalische Chemie, 69120<br />

Heidelberg — 2 Technische Universitaet Muenchen, Physik-Department<br />

E22, 85747 Garching<br />

Arrays of microfabricated pillars are constructed to serve as a template<br />

for mimicking the actin cortex. Different methods to fabricate pillar arrays<br />

will be discussed, these involve top-down and bottom-up approaches<br />

using photolithographic techniques, plasma etching processes and epitaxial<br />

ZnO growth. A two-dimensional network of actin filaments, that<br />

is pending from the pillar tops, is fabricated. Due to the 3-dimensional<br />

template surface interaction of the filaments hanging in between the pillars<br />

with substrate surfaces is prevented. This opens new possibilities<br />

to study the mechanics of 2-dimensional actin networks as a function of<br />

actin-crosslinkers, and the active diffusion of molecular motors operating<br />

on pending networks. The behaviour of this artificial actin cortex will be<br />

compared to models of networks and to cortices in living cells.<br />

AKB 50.14 Fr 10:30 B<br />

Dynamics of cell adhesion contacts and forces on rigid nanoadhesive<br />

templates — •Christine Selhuber 1 , Marco Arnold 1 ,<br />

Roman Glass 1 , Jacques Blümmel 1 , Horst Kessler 2 , and<br />

Joachim Spatz 1 — 1 Universität Heidelberg, Biophysikalische Chemie,<br />

INF 253, 69120 Heidelberg — 2 TU München, Institut für Organische<br />

Chemie und Biochemie, Lichtenbergstrasse 4 , 85747 Garching<br />

Cooperative processes in cell adhesion are one of the most fundamental<br />

issues in cell sciences which control many cell functions. Nanometer<br />

sized RGD based adhesive dots of an extension smaller 8 nm are applied<br />

as bindin g sites for the activation of a single integrin per dot. The dots<br />

assemble with high precision on interfaces where the pattern geometry<br />

and the separation of single dots can be controlled in a flexible way. Thus,<br />

the pattern resembles a rigid adhesive template on which cell or vesicle<br />

adhesion can be probed with single receptor resolution. If adhesive dots<br />

are separated by more than 73 nm cell adhesion fails due to extended<br />

singl e integrin-integrin separation, as well as cell spreading, formation<br />

of foca l contact clusters and actin stress fibre formation is constricted.<br />

The adhesion forces generated on such substrates are measured as a function<br />

of nanopattern geometry and adhesion time. The dynamic change of<br />

the cell adhesive area is determined using reflection interference contrast<br />

microscopy.<br />

AKB 50.15 Fr 10:30 B<br />

Probing a Biomimetic Model of the Actin Cortex with Dynamic<br />

Holographic Optical Tweezers — •Christian Schmitz, Jennifer<br />

Curtis, and Joachim Spatz — Biophysikalische Chemie, Institut für<br />

Physikalische Chemie, Universität Heidelberg<br />

The actin cortex is an adaptive chemo-mechanical polymer network<br />

located beneath the cell membrane. A thin, quasi two-dimensional (2D)<br />

network, the actin cortex plays a leading role in controlling cellular viscoelasticity,<br />

shape, and motility. Regulated by internal and external stimuli,<br />

the actin cortex varies its properties with controlled reversible polymerisation<br />

of actin. We construct a freely-floating 2D biomimetic actin<br />

network to address key questions such as what are the viscoelastic properties<br />

of a 2D actin network, and how are these mechanical properties<br />

modified by active, biochemical components like molecular motors. The<br />

actin network is arranged and probed using holographic optical tweezers,<br />

which produce and independently steer one to hundreds of optical traps.<br />

Using a bed of optical traps, microspheres are arranged into a geometric<br />

array onto which actin is deposited or grown. The tweezers coordinatively<br />

exert distorting forces on the network and when calibrated, they measure<br />

the response of the network at each microsphere.<br />

AKB 50.16 Fr 10:30 B<br />

Optical Control of Neuronal Growth — •Björn Stuhrmann,<br />

Josef Käs, Allen Ehrlicher, Michael Gögler, Daniel Koch,<br />

and Timo Betz — Lehrstuhl für die Physik weicher Materie, Universität<br />

Leipzig, Fakultät für Physik und Geowissenschaften, Linnéstr. 5,<br />

D-04103 Leipzig, Germany<br />

The control of neuronal growth is an essential tool in neuroscience,<br />

cell biology, biophysics, biomedicine, and is particularly important for<br />

the formation of neural circuits in vitro, as well as nerve regeneration in<br />

vivo. We have shown experimentally that we can use weak optical forces<br />

to influence the motility of a growth cone by biasing the polymerizationdriven<br />

intracellular machinery. In actively extending growth cones, a laser<br />

spot placed at specific areas of the nerve’s leading edge affects the following<br />

three potentially important elements of controlled neuronal network<br />

formation: the growth speed, the direction taken by a growth cone, and<br />

the splitting of a growth cone [Ehrlicher et al. ”Guiding neuronal growth<br />

with light” PNAS (2002)]. We have also succeeded to establish transient<br />

cell-cell contacts between growth cones and cell bodies of other nerve<br />

cells. Our results open a new venue to control neuronal growth with a<br />

simple, noncontact technique with potential applications in the formation<br />

of neural networks and in understanding the cytoskeleton driven<br />

morphological changes in growth cones.<br />

AKB 50.17 Fr 10:30 B<br />

Elektrische Charakterisierung von Metall-Glas-<br />

Elektrodenstrukturen zur Stimulation von Neuronen —<br />

•S. Günther 1 , A. Krtschil 1 , A. Reiher 1 , H. Witte 1 , A. Krost 1 ,<br />

A. de Lima 2 , T. Opitz 2 und T. Voigt 2 — 1 Institut für Experimentelle<br />

Physik, Otto-von-Guericke-Universität Magdeburg, PF 4120, D-39016<br />

Magdeburg — 2 Institut für Physiologie, Otto-von-Guericke-Universität<br />

Magdeburg, Leipziger Str. 44, D-39120 Magdeburg<br />

Durch in vitro-Kultivierung von Neuronen aus dem Kortex embryonaler<br />

Ratten ist es möglich, 2-dimensionale neuronale Netzwerke zu erzeugen,<br />

in die planare Elektrodenstrukturen zur elektrischen Kommunikation<br />

mit den Neuronen integriert werden können. Die Stimulation<br />

und das Auslesen von Aktionspotentialen wird dabei maßgeblich von den<br />

elektrischen Eigenschaften des Systems Elektrodenstruktur, Nährlösung<br />

und neuronales Netzwerk bestimmt. Die Untersuchungen wurden an<br />

Streifen- und Fingerstrukturen von Ti/Au-Schichten durchgeführt. Auf<br />

der Grundlage von elektrischen Untersuchungen der Einzelkomponenten,<br />

sowie der vollständigen Anordnung wurde ein Ersatzschaltbild zur Beschreibung<br />

der DC/AC-Eigenschaften erstellt. Als ein kritischer Parameter<br />

des Interfaces erwies sich das elektrische Verhalten der Nährlösung,<br />

verbunden mit elektrolytischen Effekten. Aufgrund dieser Analysen wurde<br />

ein geeignetes Parameterfeld gefunden und optimiert, so dass neuronale<br />

Netzwerke stimuliert werden konnten.<br />

AKB 50.18 Fr 10:30 B<br />

Mechanism of Model Membrane Fusion Determined from<br />

Monte Carlo Simulation — •Marcus Mueller 1 , Kirill<br />

Katsov 2 , and Michael Schick 2 — 1 Institut fuer Physik, WA331,<br />

Johannes Gutenberg Universitaet, D55099 Mainz, Germany — 2 Dept.<br />

of Physics, University of Washington, Seattle, WA 98195-1560, USA<br />

Fusion of membranes is essential to living systems, but its mechanism<br />

is not well understood. We have carried out extensive Monte Carlo simulations<br />

of the fusion of tense apposed bilayers formed by amphiphilic<br />

molecules within the framework of a coarse grained lattice model. Our<br />

model exhibits a phase diagram which is similar to that of biological<br />

lipids. The fusion pathway, however, differs from the “hemifusion hypothesis”.<br />

First stalks form between the apposed bilayers, but rather than expanding<br />

radially to form an axial-symmetric hemifusion diaphragm of<br />

the cis leaves of both bilayers, they promote hole nucleation of the bilayers<br />

in their vicinity. Two subsequent paths are observed: (i) A second<br />

hole is formed in the opposite bilayer, and the stalk aligns both hole as<br />

it encircles them and forms the fusion pore. (ii) The stalk encircles the<br />

hole completely before a second hole is formed in the opposite bilayer.<br />

A diphragm is formed out of both leaves of the intact bilayer. The rupture<br />

of this diaphragm completes fusion. Both pathways give rise to an<br />

increase in mixing between the cis and trans leaves of the bilayer and<br />

allow for leakage.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!