09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Magnetismus Donnerstag<br />

MA 24.4 Do 12:30 H23<br />

MAGNETIC-FIELD-INDUCED STRAINS IN FERROMAG-<br />

NETIC SHAPE-MEMORY ALLOYS — •U.K. Rößler 1 ,<br />

A.N. Bogdanov 1,2 , A. DeSimone 3 , S. Müller 2 , and F. Otto 4<br />

— 1 Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden,<br />

Postfach 270116, 01171 Dresden — 2 Max-Planck-Institut für Mathematik<br />

in den Naturwissenschaften, Inselstr. 22 - 26, 04103 Leipzig<br />

— 3 International School for Advanced Studies, via Beirut 2-4, 34014<br />

Trieste — 4 Institut für Angewandte Mathematik, Universität Bonn,<br />

Wegelerstr. 10, 53115 Bonn<br />

Phenomenological equations for multivariant states in a ferromagnetic<br />

martensitic materials have been derived [1]. We apply the theory to describe<br />

the evolution of a tetragonal twinned martensitic microstructure<br />

consisting of two variants. Analytical solutions for the components of the<br />

strain tensor can be obtained as functions of external stresses and the<br />

volume fractions of the twin variants. Equilibrium magnetic parameters<br />

have been calculated within phase theory approximation and for a model<br />

of stripe domains. Critical lines between multivariant (twinned) states<br />

and the two types of homogeneous states and corresponding field-stress<br />

phase diagrams have been calculated. Sufficiently high stresses can block<br />

multivariant states. Then, the transition between the two homogeneous<br />

states occurs as a first-order process. Time-dependent processes can be<br />

simulated based on a kinetic equation within this phenomenological theory.<br />

[1] A.N. Bogdanov, A. DeSimone, S. Müller, U.K. Rößler, J. Magn.<br />

Magn. Mater. 261, 204 (2003).<br />

MA 24.5 Do 12:45 H23<br />

Modulated martensitic structures in MBE-grown NiMnAl<br />

magnetic shape memory alloys — •Sigurd Thienhaus 1 , Ralf<br />

Hassdorf 1 , Jürgen Feydt 1 , Rene Borowski 1 , Markus Boese 2 ,<br />

and Michael Moske 1 — 1 Forschungszentrum caesar, 53175 Bonn —<br />

2 Universität Bonn, Institut für Anorganische Chemie, 53117 Bonn<br />

Composition spreads close to the Heusler alloy Ni2MnAl were grown<br />

onto four-inch wafer substrates by molecular beam epitaxy. Compositional<br />

variations of around 10 at.% relative to each constituent enable a<br />

direct comparison of the chemical-structural relationship with respect to<br />

martensitic transformation and to magnetic ordering as well as an efficient<br />

identification of the emerging phase stability regions. In our study,<br />

MA 25 Hauptvorträge Thiaville / Kläui<br />

we set the primary focus on the structural aspects of the transformation<br />

behavior as confirmed by X-ray microdiffraction in combination with a<br />

specially designed heating stage. Notably, high-resolution cross-sectional<br />

TEM imaging of the respective composition areas reveals a laminated<br />

two-phase martensitic structure within the single grains, identified as<br />

a sequence of 2M and 14M variants. Stress relief upon transformation<br />

is observed during thermal processing in a bending-beam stress apparatus<br />

and ranges from 50 to 200 MPa depending on the composition.<br />

Vibrating-sample magnetometry so far suggests magnetic ordering to occur<br />

well below room temperature. In this context, the compositional and<br />

microstructural aspects of the phase stabilities will be discussed.<br />

MA 24.6 Do 13:00 H23<br />

Ab-initio Struktur-Simulationsrechnungen zur magnetischen<br />

Formgedächtnislegierung Ni-Mn-Al — •Thomas Büsgen 1 ,<br />

Jürgen Feydt 1 , Ralf Hassdorf 1 , Sigurd Thienhaus 1 , Markus<br />

Boese 2 , Alexey Zayak 3 , Peter Entel 3 und Michael Moske 1<br />

— 1 Center of Advanced European Studies and Research (caesar),<br />

Ludwig-Erhard-Allee 2, 53175 Bonn, Germany — 2 Universität Bonn,<br />

Institut für Anorganische Chemie, 53117 Bonn, Germany — 3 Gerhard-<br />

Mercator-Universität Duisburg-Essen, Lotharstr. 1, 47048 Duisburg,<br />

Germany<br />

Es werden die Ergebnisse von ab-initio Berechnungen, basierend auf<br />

DFT und PAW Basissätzen, zur magnetischen Formgedächtnislegierung<br />

Ni-Mn-Al vorgestellt. Dabei wurde die Abhängigkeit der Stabilität und<br />

physikalischer Eigenschaften von der Zusammensetzung verfolgt. Es kann<br />

gezeigt werden, dass der Grundzustand der Legierung bei einer festen<br />

Ni-Konzentration von 50 at.% im Bereich von 14 bis 31 at.% Mn ferromagnetisch<br />

ist. Die magnetische Eigenschaften werden u.a. anhand der<br />

Zustandsdichten erklärt.<br />

Desweiteren wurden die martensitischen Phasen 2M, 10M und 14M<br />

mit langperiodischen Modulationen für Ni2MnAl simuliert. Alle untersuchten<br />

Martensitphasen sind metastabil für die exakt stöchiometrische<br />

Zusammensetzung. Ihre Stabilität wird in Bezug zu Zustandsdichten und<br />

Ladungsverteilung zwischen den Atomen diskutiert. Aus den relaxierten<br />

Strukturdaten wurden Röntgendiffraktogramme berechnet, die zusammen<br />

mit TEM-Untersuchungen die Existenz der 2M- und 14M-Phase in<br />

Proben belegen, die mittels Molekular-Strahl-Epitaxie hergestellt wurden.<br />

Zeit: Donnerstag 14:00–15:00 Raum: H10<br />

Hauptvortrag MA 25.1 Do 14:00 H10<br />

The physics of magnetic domain wall motion in nanostructures<br />

— •André Thiaville, Yoshinobu Nakatani, and Jacques Miltat<br />

— CNRS-Uni. Paris-sud, Lab. physique des solides, 91405 Orsay, France<br />

This talk will present our work on the domain wall motion in lithographically<br />

defined flat nanowires (thickness 5-10 nm, width 100-200 nm).<br />

These structures show domain walls and a dynamic behaviour that are<br />

slightly more complex than a one-dimensionnal (1d) solution, whose prototype<br />

is the Walker theory for a 1d Bloch wall. First I will discuss field<br />

driven propagation (field along the wire axis), which is characterized by<br />

the magnetization precession around the applied field. As the wire is too<br />

wide to be 1d the so-called Walker breakdown, where a continuous precession<br />

of the magnetic moment of the domain wall sets in, is shown to<br />

be replaced by the periodic injection and disappearance of an antivortex.<br />

This phenomenon is very sensitive to the edges perfection : a wire having<br />

rough edges will not undergo this mechanism and hence support fast wall<br />

propagation at high fields. Then I will explain our study of the domain<br />

wall motion induced by a current in the nanowire, due to the spin-transfer<br />

torque. As the form of this torque is not yet fully agreed on, especially<br />

in the wire geometry, I will present calculations incorporating different<br />

formulations of this torque.<br />

Hauptvortrag MA 25.2 Do 14:30 H10<br />

Magnetotransport and current induced domain wall propagation<br />

in ring structures with constrictions — •Mathias Kläui 1,2 ,<br />

C. A. F. Vaz 2 , J. A. C. Bland 2 , L. J. Heyderman 3 , W. Wernsdorfer<br />

4 , and U. Rüdiger 1 — 1 Universität Konstanz, Fachbereich<br />

Physik, 78457 Konstanz, Deutschland — 2 Cavendish Laboratory, Madingley<br />

Road, Cambridge, CB3 0HE, UK — 3 LMN, Paul Scherrer Institut,<br />

5232 Villigen-PSI, Schweiz — 4 Laboratoire Louis Neel-CNRS, BP 138,<br />

38274 Grenoble, Frankreich<br />

The key to using magnetic nano-elements in applications is the presence<br />

of well-defined remanent states and reproducible switching. A possible<br />

geometry that fulfills these criteria is the ring geometry where due to<br />

the high symmetry particularly simple states and switching occur [1]. In<br />

addition to the flux-closure vortex state, the high-moment ’onion state’<br />

was observed, which is characterized by two transverse or vortex headto-head<br />

domain walls [1].<br />

Owing to the constant curvature, rings have been found to be an ideal<br />

geometry for probing domain wall properties. Using magnetoresistance<br />

measurements, the behaviour of the different types of domain walls at<br />

constrictions has been investigated (attraction or repulsion). Furthermore<br />

the change of resistance as a domain wall moves into a constriction<br />

can be accounted for by the change in spin structure. Finally, high current<br />

densities are used to displace head-to-head domain walls. Such currentinduced<br />

domain wall propagation is explained by a spin-torque effect. [2]<br />

[1] M. Kläui et al., Topical Review in J. Phys. Condens. Matter 15, 985<br />

(2003) [2] M. Kläui et al., Appl. Phys. Lett. 83, 105 (2003)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!