09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Arbeitskreis Biologische Physik Dienstag<br />

AKB 20 Physics of DNA<br />

Zeit: Dienstag 09:30–11:00 Raum: H40<br />

Hauptvortrag AKB 20.1 Di 09:30 H40<br />

Physics of DNA Compaction into Chromatin — •Helmut<br />

Schiessel — Max-Planck-Institute for Polymer Research, Theory<br />

Group, D 55021 Mainz<br />

Chromatin is the dense complex between DNA and histone proteins<br />

that occupies the nuclei of plant and animal cells. At the lowest level the<br />

DNA is wrapped around protein spools forming so-called nucleosomes.<br />

The resulting string of nucleosomes is folded into the chromatin fiber. I<br />

will present theoretical models that allow to interpret recent experiments<br />

on the stretching of single nucleosomes and of chromatin fibers.<br />

Our findings on single nucleosomes suggest a mechanism by which the<br />

nucleosome combines two seemingly contradictory features: being very<br />

stable and having its wrapped DNA highly accessible at the same time.<br />

Our results on fiber stretching show the delicate interplay between soft<br />

elasticity due to the DNA linker backbone and stiffening due to internucleosomal<br />

contacts – directing the folding of fibers at the next level of<br />

DNA compaction.<br />

cf. also the review: H. Schiessel, J. Phys.: Condens. Matter 15 (2003)<br />

R699-R774<br />

AKB 21 Bioadhesion and Molecular Forces<br />

Hauptvortrag AKB 20.2 Di 10:00 H40<br />

Structure and Dynamics of DNA Nanoparticles — •Joachim<br />

Rädler — Geschwister-Scholl-Platz 1, D-80539 München<br />

e report on various strategies to assemble cationic lipid-DNA and<br />

polypeptide DNA nanocomplexes. For application in gene therapy wellcontrolled<br />

single- plasmid particles are formed from dilute solutions of<br />

DNA and oppositely charged macromolecules. The internal structure,<br />

size and transport properties of the complexes are characterized using<br />

small angle X-ray scattering, fluorescence microscopy and fluorescence<br />

correlation spectroscopy.<br />

Hauptvortrag AKB 20.3 Di 10:30 H40<br />

Electronic Detection of DNA on Transistor Arrays — •Ulrich<br />

Bockelmann, François Pouthas, Cedric Gentil, and Denis<br />

Cote — LPMC Ecole Normale Supérieure, Paris, France<br />

This talk will focus on our research on electronic detection of unlabeled<br />

biomolecules. Field effect measurements, based on integrated silicon transistor<br />

arrays, are used to detect DNA bound to a solid/liquid interface.<br />

The planar configuration is compatible with DNA chip technology and<br />

with microfluidics approaches.<br />

Zeit: Dienstag 11:30–13:00 Raum: H40<br />

Hauptvortrag AKB 21.1 Di 11:30 H40<br />

Chemische Kinetik einzelner spezifischer Bindungen — •Rudolf<br />

Merkel 1 und Melanie Nguyen-Duong 2 — 1 Institut für Schichten<br />

und Grenzflächen, Forschungszentrum Jülich — 2 Lehrstuhl für Biophysik<br />

E22 der Technischen Universität München<br />

Bioadhäsion ist ein physiologischer Prozess von großer Bedeutung. Der<br />

zugrunde liegende Mechanismus ist die spezifische Erkennung und Bindung<br />

zwischen komplementären Zelladhäsionsmolekülen, welche biologische<br />

Strukturen (z.B. zwei Zellen) mechanisch verbinden. Erst in den<br />

letzten Jahren wurden mechanische Experimente an einzelnen solchen<br />

Bindungen möglich. Hierbei zeigte sich überraschenderweise, dass die Dissoziationsrate<br />

einzelner Bindungen, welche mikroskopische Körper verbinden,<br />

ungefähr 100 mal größer ist im Vergleich zu Bindungen zwischen<br />

denselben Molekülen in Lösung. Wir präsentieren hier eine mögliche Erklärung<br />

dieses Phänomens sowie entsprechende experimentelle Befunde.<br />

Hauptvortrag AKB 21.2 Di 12:00 H40<br />

Forces acting on Biological Model Systems — •Udo Seifert — II.<br />

Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart<br />

An overview on our recent theoretical work about the effects of forces<br />

on three biological model systems will be given. (i) Forces acting on adhering<br />

vesicles lead to significant shape changes thereby inducing detachment<br />

of bound vesicles either by smooth deformations for weak adhesion<br />

or tether formation for strong adhesion [1]. (ii) Time-dependent forces<br />

AKB 22 Single Molecule Methods<br />

acting on surfaces hold together by receptor/ligand pairs lead to rupture<br />

depending on the loading rate. For slow loading rebinding events<br />

become crucial [2]. (iii) For forces acting on a single biopolymer with two<br />

equilibrium configurations (like folded/ unfolded) the equilibrium energy<br />

landscape along the pulling co-ordinate can be reconstructed even from<br />

non-equilibrium experiment data by using the Jarzynksi relation.<br />

[1] A. Smith, E. Sackmann and U. Seifert, Europhys. Lett. 64, 281,<br />

2003.<br />

[2] U. Seifert, Phys. Rev. Lett. 84, 2750, 2000; Europhys. Lett. 58, 792,<br />

2002.<br />

[3] O. Braun, A. Hanke and U. Seifert, in preparation.<br />

Hauptvortrag AKB 21.3 Di 12:30 H40<br />

Cell Organization in Soft Media due to Active Mechanosensing<br />

— •Ulrich Schwarz — Max Planck Institute of Colloids and Interfaces,<br />

Golm<br />

Adhering cells actively probe the mechanical properties of their environment<br />

in order to position and orient themselves. In an elastically<br />

anisotropic environment, cells prefer to orient in the direction of maximal<br />

effective stiffness. By converting this observation into an extremum<br />

principle in linear elasticity theory, we can predict cell organization in<br />

soft media in excellent agreement with experiments with fibroblasts on<br />

elastic substrates and in hydrogels. We also discuss how effective cell behaviour<br />

might follow from the stochastic dynamics of cell-matrix contacts<br />

under force.<br />

Zeit: Dienstag 14:00–16:00 Raum: H40<br />

Hauptvortrag AKB 22.1 Di 14:00 H40<br />

A Biophysical View of Molecular Recognition — •Dario Anselmetti<br />

—<br />

Mechanical unbinding experiments with single molecules give insights<br />

into the physico-chemical fundamentals and mechanisms of biomolecular<br />

recognition and specific interaction. In biology, this is often associated<br />

with complex processes such as replication, transcription/translation, or<br />

gene regulation. After an introduction, which briefly explains our experimental<br />

methods (single molecule force spectroscopy with AFM and<br />

optical tweezers), key findings between mechanical single-molecule experiments<br />

and biomolecular ensemble experiments are summarized. Latest<br />

results on transcriptional proteins and DNA, synthetically produced<br />

peptide analoga and DNA, as well as on artificial recognition elements<br />

(supramolecular guest-host systems) will be presented and discussed<br />

within the framework of our Nanobiology activities.<br />

Hauptvortrag AKB 22.2 Di 14:30 H40<br />

Mechanical Single Molecule Experiments in the Thermal Energy<br />

Regime — •Ernst-Ludwig Florin — EMBL, Cell Biology and<br />

Biophysics Programme, Meyerhofstrasse 1, D-69117 Heidelberg<br />

Hauptvortrag AKB 22.3 Di 15:00 H40<br />

Labeling of Cells with Quantum Dots — •Wolfgang Parak —<br />

Center for Nanoscience, LMU Muenchen, Muenchen, Germany<br />

Colloidal quantum dots are semiconductor nanocrystals well dispersed<br />

in a solvent. The optical properties of quantum dots, in particular the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!