09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Metallphysik Montag<br />

cke, Nestler and Stinner that is especially appropriate for modelling<br />

phase transitions in alloy systems with multiple components and multiple<br />

phases. In this work we explore characteristic microsrtuctures occuring<br />

in different regions of a typical binary eutectic phase diagram<br />

using uniform approach based on the generalized phase-field model both<br />

for simulation of single phase growth and for two phase growth structures.<br />

To obtain numerical solution of governing equations we use finite<br />

element method with an adaptive mesh refinement. Simulations include<br />

single primary phase growth and melting of eutectic structure above the<br />

eutectic temperature and eutectic and off-eutectic solidification below.<br />

Components redistribution in the liquid along the solidification front and<br />

along the growth direction for different growing structures, dependence<br />

of two phase lammelar growth on value of surface entropy densities are<br />

analysed and compared with theoretical predictions.<br />

M 4.4 Mo 12:30 H16<br />

A Multiscale 3D Simulator for Dendritic and Eutectic Structure<br />

Formation — •Frank Wendler and Britta Nestler — University<br />

of Applied Sciences Karlsruhe, Germany<br />

Diffuse interface models allow for an effective computational treatment<br />

M 5 Elektronische Eigenschaften<br />

of free boundary problems with complicated interface morphology. Here<br />

different solidification phenomena of pure metals, binary and ternary alloys<br />

are studied relying upon the formerly introduced multi-phase-field<br />

model [1,2].<br />

After an appropriate choice of thermophysical and numerical parameters,<br />

quantitative 2D and 3D calculations of dendritic solidification in a<br />

pure melt (Ni) and in binary (Ni-Cu) and ternary alloys were performed.<br />

The following analysis of the simulation data provides the dynamical and<br />

geometrical parameters. For the dendritic phases these quantities are the<br />

tip speed, the tip radius and the primary arm spacing, which are compared<br />

with theoretical and experimental data. Also, a strong influence<br />

of the interplay between kinetic and surface anisotropy on the dendrite<br />

morphology is observed. Smooth anisotropic and facetted patterns are<br />

simulated and compared. For the examined binary and ternary eutectic<br />

systems, characteristic lamellae spacings are found and related to the<br />

classical theory of Jackson and Hunt and to a new analytical extensions<br />

of this theory for ternary systems.<br />

[1] B. Nestler, A.A. Wheeler, Physica D 138 (2000) 114-133<br />

[2] H. Garcke, B. Nestler und B. Stinner, SIAM J. on Appl. Math., in<br />

print<br />

Zeit: Montag 11:45–12:45 Raum: H4<br />

M 5.1 Mo 11:45 H4<br />

Perfectly transferable many-body potentials and related generalized<br />

cluster expansions not confined to lattices — Ralf<br />

Drautz 1 , •Manfred Fähnle 1 , and Juan M. Sanchez 2 — 1 MPI für<br />

Metallforschung, Heisenbergstr. 3, 70569 Stuttgart, Germany — 2 Texas<br />

Materials Institute, The University of Texas at Austin, Austin, Texas<br />

78712<br />

There are two main streams for the parametrized representation of the<br />

energy of a system of atoms, the expansion into many-body potentials<br />

(which focusses on the positional degrees of freedom) and the conventional<br />

cluster-expansion technique [1] (which focusses on the ordering<br />

degrees of freedom in multicomponent lattice systems). To accelerate<br />

the convergence of the many-body expansion, often empirical effective<br />

and environment-dependent many-body potentials with fitting parameters<br />

are used which have the disadvantage that they are accurate only<br />

for configurations close to certain reference configurations. We demonstrate<br />

how perfectly transferable many-body potentials can be generated<br />

by ab-initio total energy calculations. The so-defined many-body potentials<br />

can be used to compare empirical energy parametrizations on the<br />

basis of the behaviour of their respective potential expansion. It is shown<br />

how the techniques of the many-body expansion and of the conventional<br />

cluster-expansion can be merged to a generalized cluster-expansion not<br />

confined to lattices.<br />

[1] J. M. Sanchez et al., Physica 128A, 334 (1984).<br />

M 5.2 Mo 12:00 H4<br />

A quantum chemical ab-initio calculation of the cohesive energy<br />

of mercury — •Beate Paulus 1 and Krzysztof Rosciszewski 1,2 —<br />

1 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße<br />

38, D-01187 Dresden — 2 Institute of Physics, Jagellonian University,<br />

Reymonta 4, Pl 30-059 Krakow, Poland<br />

The cohesive energy of solid mercury in the rhombohedral structure<br />

is determined within an ab-initio many-body expansion for the correlation<br />

part. Very good agreement with the experimental value is obtained.<br />

The self-consistent field ( Hartree-Fock) part is repulsive, the binding is<br />

entirely due to correlations. The correlation of the closed 5d shell contributes<br />

about half the cohesive energy. Relativistic effects are found to<br />

be very important.<br />

M 5.3 Mo 12:15 H4<br />

Initial and final state band contributions in angle resolved<br />

photoemission spectra of Bi(111) — •Christian Ast 1,2 and<br />

Hartmut Höchst 1 — 1 Synchrotron Radiation Center, University of<br />

Wisconsin-Madison, Stoughton, WI, USA — 2 Max-Planck-Institut für<br />

Festkörperforschung, Stuttgart<br />

Establishing the bulk valence band dispersion Ei(k) from angle resolved<br />

photoemission spectra is still an ongoing challenge since the final<br />

state bands Ef(k) are generally not known. However, using a broad range<br />

of photon energies the measurements extend over several bulk Brillouin<br />

zones which can then be used to extract information about the valence<br />

band states. An analysis is presented in which the final and initial state<br />

dispersion along ΓT is extracted from photoemission spectra of Bi(111).<br />

We will show that the free electron final state (FEFS) model is valid<br />

above 60eV. For lower photon energies, we establish an energy dependent<br />

extension of the FEFS’s. Because of direct and umklapp transitions<br />

into multiple final states we observe emission gaps indicating avoided<br />

crossings in certain branches of the final state bands. Once the origin of<br />

these additional features is identified, the true bulk valence band dispersion<br />

can be established.<br />

M 5.4 Mo 12:30 H4<br />

Oktaederverkippung in ACu3Ru4O12 (A=Na, Ca, Sr, La, Nd) —<br />

•Udo Schwingenschlögl, Volker Eyert und Ulrich Eckern —<br />

Theoretische Physik II, Institut für Physik, Universität Augsburg, 86135<br />

Augsburg<br />

Wir haben die elektronischen Eigenschaften der perovskit-artigen Verbindungen<br />

ACu3Ru4O12 (A=Na, Ca, Sr, La, Nd) anhand von Bandstrukturrechnungen<br />

basierend auf der Dichtefunktionaltheorie und der lokalen<br />

Dichtenäherung untersucht [1]. Die elektronische Struktur dieser Materialien<br />

wird in erheblichem Maß von kovalenten Bindungsanteilen zwischen<br />

Übergangsmetal d- und Sauerstoff p-Zuständen beeinflusst. Insbesondere<br />

ist die charakteristische Verkippung der RuO6 Oktaeder auf starke Cu-O<br />

Hybridisierung zurückzuführen. Im Gegensatz dazu werden sowohl die<br />

Ru-O als auch die A-O Bindungslängen durch das Verkippen der Oktaeder<br />

kaum beeinflusst. Die beobachteten ungewöhnlich kleinen A-O Bindungsabstände<br />

und damit das Fehlschlagen des Bond-Valence Modells<br />

sind eine Folge der im Vergleich zu den Cu-O Bindungen nur schwachen<br />

A-O Hybridisierung. Unsere Ergebnisse erlauben ein besseres Verständnis<br />

der Oktaederverkippung als universellen Mechanismus der Optimierung<br />

von Bindungsabständen in perovskit-artigen Materialien. Gerade bei der<br />

Suche nach neuartigen Materialeigenschaften ist dies wegen der Auswirkungen<br />

der strukturellen Verzerrung auf die physikalischen Eigenschaften<br />

von speziellem Interesse.<br />

[1] U. Schwingenschlögl, V. Eyert, and U. Eckern, Chem. Phys. Lett.<br />

370, 719 (2003)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!