09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Arbeitskreis Biologische Physik Montag<br />

[2] H.-G. Döbereiner et al., Phys. Rev. Lett. 91, 048301 (2003).<br />

[3] K.A. Riske and H.-G. Döbereiner, Biophys. J. 85 2352-2362 (2003).<br />

[4] C.K. Haluska, W. Gó´zd´z, H.-G. Döbereiner, S. Förster, G. Gompper,<br />

Phys. Rev. Lett. 89, 238302 (2002).<br />

[5] B.J. Dubin-Thaler, G. Giannone, H.-G. Döbereiner, M.P Sheetz, Bio-<br />

phys. J. (2004), in press.<br />

AKB 12 Active Systems: Complex Cellular Processes<br />

Zeit: Montag 14:30–16:30 Raum: H40<br />

Hauptvortrag AKB 12.1 Mo 14:30 H40<br />

Active Polymer Networks in Biological Cells — •Josef Käs,<br />

Claudia Brunner, Jochen Guck, Falk Wottawah, Stefan<br />

Schinkinger, Karla Mueller, Timo Betz, Bjoern Stuhrmann,<br />

Daniel Koch, Allen Ehrlicher, Michael Goegler, and David<br />

Smith — Fakultaet fuer Physik und Geowissenschaften, Universitaet<br />

Leipzig<br />

Cells signify the next fundamental challenge to soft matter physics<br />

since they require establishing the physics of networks of active nanoelements.<br />

All eukaryotic cells depend in their internal structure and organization<br />

on a highly dynamic and active polymer network, the cytoskeleton.<br />

Our results demonstrate that switchable nano-sized motors<br />

can regulate the structural strength and assembly of such polymer networks.<br />

These active mechano-sensitive networks generate motion driven<br />

by nano-muscles and polymerization. Scanning force microscopy allows<br />

us a precise spatial characterization of the resulting active forces. Lasers<br />

provide optomolecular control over these active motions. In neurons weak<br />

optical gradient forces can determine the growing nerve’s leading edge’s<br />

direction, speed, branching, and contact to other neurons. Moreover,<br />

these intracellular networks are closely related to cellular differentiation<br />

and thus, cell elasticity measurements with our new laser trap, the optical<br />

cell stretcher, provide an unparalleled cell marker distinguishing<br />

malignant cells as well as stem cells from other cells.<br />

Hauptvortrag AKB 12.2 Mo 15:00 H40<br />

Dynamic Phenomena and Force Generation in Cells — •Frank<br />

Jülicher — Max-Planck Institut für Physik komplexer Systeme,<br />

Nöthnitzerstr. 38, 01187 Dresden<br />

Living cells exhibit a remarkable variety of active behaviors. Material<br />

is transported within the cell, cells divide and a lot of cells can swim or<br />

crawl along substrates. The molecular basis of such behaviors are highly<br />

specialized protein molecules which transduce the chemical energy of a<br />

fuel molecule, ATP, to mechanical work and motion. A prototype system<br />

are molecular motors of the cytoskeleton which generate forces and motion<br />

along linear filaments. The activity on the molecular level leads to<br />

complex dynamic behaviors as a result of the interaction of many interacting<br />

components. The cytoskeleton on larger scales thus represents a<br />

gel-like soft material which is far from thermal equiligrium due to internal<br />

active processes. The physical properties and the dynamics of such<br />

active gels can be described by a hydrodynamic theory. These concepts<br />

can be used to obtain a phenomenological descriptoin of dynamic cellular<br />

phenomena such as cell locomotion.<br />

Hauptvortrag AKB 12.3 Mo 15:30 H40<br />

Symmetriebrechung in einem mulitzellulären System am Besipiel<br />

der Hydra — •Albrecht Ott 1 , Jordi Soriano 1 und Cyril<br />

Colombo 2 — 1 Universität Bayreuth, EP1, NW1, 95440 Bayreuth, Germany<br />

— 2 Institut Curie, Paris, France<br />

Die Hydra hat erstaunliche Regenerationsfähigkeiten. Sie kann sich<br />

nach Dissoziation in einzelne Zellen aus einem ungeordneten Zellball neu<br />

formieren. Dabei bildet sie zunächst einen Zellball, dann wird die Achse<br />

des Tieres festgelegt. Wir untersuchen diesen Prozess der Achsenfindung.<br />

Wir zeigen das eine wohlregulierte mechanische Pumpbewegung des Balles<br />

offenbar Information über die Achsenfindung überträgt. Unsere Beobachtung<br />

ergänzt molekularbiologische Studien, die auf die Wichtigkeit<br />

der Adhesionsregulierung hinweisen. Sie erklärt ebenfalls, wie eine kleine<br />

Gruppe von fünf bis zehn irreversibel differenzierten Zellen den Prozess<br />

der Achsenfindung entscheiden und mitteilen kann. Wir untersuchen<br />

die Expression des Gens ks1 durch insitu Hybridisierung. Ks1 wird als<br />

repräsentativ für das genetische Kopfprogramm der Hydra angesehen.<br />

Erste Ergebnisse weisen auf ein fluktuierendes Expressionsmuster dieses<br />

Gens auf dem Zellball hin, die Grössenverteilung skaliert. Wir etablieren<br />

einen Zusammenhang mit der kürzlich in der Hydra nachgewiesenen<br />

WNT-Signalkaskade her. Wir schlagen vor das genetische Fluktuationen<br />

die Symmetrie brechen.<br />

Hauptvortrag AKB 12.4 Mo 16:00 H40<br />

Investigating Cell Division and Cell Protrusion by AFM —<br />

•Manfred Radmacher — Institut für Biophysik, Universität Bremen<br />

We have used an AFM to investigate the mechanical properties of<br />

the cells cytoskeleton during dynamical processes like cell migration and<br />

division. Actin is in the case of fibroblasts cells the major cellular components<br />

responsible for the cellular stiffness. Stiffness is increased further by<br />

myosin II creating cortical tension. When myosin function is diminished<br />

by inhibiting the myosin light chain kinase a decrease in stiffness can be<br />

observed. This is congruent with importance of both actin and myosin in<br />

processes like cell migration and cell division. In cell division for instance<br />

a rapid and large increase in stiffness is observed in the region where the<br />

cleavage furrow will form. This is congruent with results from cellular<br />

biology and supports the equatorial stiffening model of cytokinesis which<br />

has been one out of several models suggested.<br />

AKB 13 Active Systems: Structure and Pattern Formation<br />

Zeit: Montag 17:00–18:00 Raum: H40<br />

Hauptvortrag AKB 13.1 Mo 17:00 H40<br />

Membranes with Rotating Motors — •Peter Lenz — Fachbereich<br />

Physik, Philipps-Universität Marburg, 35032 Marburg, Germany<br />

We study collections of rotatory motors confined to 2-dimensional manifolds.<br />

These systems show a non-trivial collective behavior since the rotational<br />

motion leads to a repulsive hydrodynamic interaction between<br />

motors. While for high rotation speed motors might exhibit crystalline<br />

order, they form at low speed a disordered phase where diffusion is enhanced<br />

by velocity fluctuations. These effects should be experimentally<br />

observable for motors driven by external fields and for dipolar biological<br />

motors embedded into lipid membranes in a viscoelastic solvent.<br />

Hauptvortrag AKB 13.2 Mo 17:30 H40<br />

Models for Pattern Formation in Cell Biology — •Walter Zimmermann<br />

— Theoretische Physik Universität des Saarlandes, 66041<br />

Saarbrücken<br />

During polymerization of the biological filaments microtubules or<br />

actin, during filament transport by motor proteins or for interacting ionchannels<br />

in biomembranes various types of spatiotemporal patterns occur.<br />

Compared to the huge variety of patterns occuring in the unanimate<br />

world, for these examples often conservation laws lead to new universality<br />

classes of patterns und with rather surprising patterns. The effects of the<br />

excluded volume interaction between filaments and the related nematic<br />

ordering lead also additional pattern formation processes. An overview<br />

about these effects and models will be given.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!