09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Oberflächenphysik Montag<br />

zitätskonstanten widerspiegelt.<br />

O 9.6 Mo 17:00 H36<br />

Warum die ”shear force” Distanzregelung auch im UHV funktioniert<br />

— •S. Hoppe, G. Ctistis, J.J. Paggel und P. Fumagalli<br />

— Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee<br />

14, 14195 Berlin<br />

Die Messung der Kräfte, zwischen einer lateral oszillierenden Spitze<br />

und der Substratoberfläche ist eine gängige Methode die Abstandskontrolle<br />

eines Nahfeldmikroskops zu realisieren. Diese Methode gehört zwar<br />

zum Standard, jedoch ist die Natur der Wechselwirkung weitgehend unbestimmt.<br />

Obwohl die Spitze bei Messungen im Ultrahochvakuum in mechanischem<br />

Kontakt zur Probe zu sein scheint, ist keine Beschädigung<br />

der Probenoberfläche erkennbar. Die Kombination aus sogenannten Distanzkurvenmessungen<br />

und Strommessung bietet die Möglichkeit, die<br />

Wechselwirkung zwischen Probe und Spitze genauer zu untersuchen.<br />

Mit Hilfe des Modells des harmonischen Oszillators werden Feder- und<br />

Dämpfungskonstante bestimmt. Durch Messung des elektrischen Kontaktes<br />

kann der Punkt der Probenberührung identifiziert werden. Die<br />

Messungen wurden an metallischen Oberflächen durchgeführt. Diese Arbeit<br />

wurde unterstützt durch die Deutsche Forschungsgemeinschaft im<br />

Rahmen des SFB 290.<br />

O 9.7 Mo 17:15 H36<br />

Study of particle-substrate interaction by nanomanipulation experiments<br />

with dynamic scanning force microscopy — •Claudia<br />

Ritter 1 , Markus Heyde 2 , and Klaus Rademann 1 — 1 Humboldt-<br />

Universität zu Berlin, Institute of Chemistry, Brook-Taylor-Str. 2, D-<br />

12489 Berlin, Germany — 2 Fritz-Haber-Institute of the Max-Planck-<br />

Society, Faradayweg 4-6, D-14195 Berlin, Germany<br />

We utilise an advanced homebuilt SFM in the dynamic mode, in<br />

conjunction with a special homebuilt software, to perform precise<br />

nanomanipulation experiments. The corresponding experimental technique<br />

should be denoted as Dynamic Surface Modification (DSM), comprising<br />

both the dynamic technique of the SFM, as well as the manipulation<br />

(translation, in-plane rotation, cutting) of structurally unchanged<br />

particles on a given substrate surface. It is easily possible to switch between<br />

imaging mode and DSM mode, enabling the direct manipulation<br />

of nanoparticles under ambient conditions with high precision and simultaneously<br />

studying particle-substrate interaction to give evidence about<br />

motion and tribological values of the sample system. We have successfully<br />

manipulated miscellaneous nanoparticles on surfaces, e.g. antimony<br />

islands, gold islands, tin islands, nanotubes, small latex spheres as well<br />

as cells.<br />

O 9.8 Mo 17:30 H36<br />

STM Imaging of PTCDA Multilayers with Submolecular Resolution<br />

— •Daniel Braun, Andre Schirmeisen, and Harald<br />

Fuchs — Physikalisches Institut and CeNTech, University of Muenster,<br />

Wilhelm-Klemm Str. 10, 48149 Muenster, Germany<br />

Organic semiconductors have attracted intensive research interest over<br />

the last decade, ever since the demonstration of a low-voltage-powered<br />

OLED [1]. Charge transport and luminescence properties are governed<br />

by the structural properties of the thin films, like molecular aggregation,<br />

packing and orientation [2]. Understanding and tuning the epitaxy<br />

of large aromatic adsorbates by molecular design is a task, which has<br />

attracted much attention in the last years [3].<br />

We investigate the growth of the archetype molecular compound<br />

PTCDA, a semiconducting organic molecule, using UHV-STM. On the<br />

thin multilayer films we observe submolecular features of the PTCDA<br />

not only from the top-layer but also from the next layer, allowing us to<br />

study directly the quasi-epitaxial growth.<br />

[1] C.W.Tang, S.A.VanSlyke, Appl.Phys.Lett.51 (1987) 913<br />

[2] C.Seidel, A.Schaefer, H.Fuchs, Surf.Sci.459 (2000) 310<br />

[3] M.Eremtchenko, J.A.Schaefer, F.S.Tautz, Nature 425 (2003) 602<br />

O 9.9 Mo 17:45 H36<br />

Damping mechanisms in dynamic force microscopy —<br />

•Andre Schirmeisen, Hendrik Hölscher, and Harald Fuchs<br />

— Physikalisches Institut und CeNTech, Universität Münster,<br />

Wilhelm-Klemm-Str.10, 48149 Münster<br />

Dynamic force microscopy (DFM) in ultrahigh vacuum (UHV) is a<br />

powerful tool to measure interatomic forces with molecular resolution.<br />

However, apart from conservative forces the DFM is also capable of measuring<br />

dissipative tip sample interactions. A considerable dispute has<br />

arisen, as to what the underlying physical mechanisms are for the observed<br />

energy dissipation. Atomic instabilities, electric damping mechanisms<br />

and even feedback artefacts have been argued to govern the dissipation.<br />

We performed force and energy dissipation spectroscopy experiments<br />

on HOPG in UHV, where our instrument is operated in two<br />

different dynamic modes: The constant excitation (CE) and constant<br />

amplitude (CA) mode. First, we show that spectroscopy measurements<br />

from both modes yield equivalent quantitative results, which allows us<br />

to exclude artefacts induced by the amplitude feedback system inherent<br />

only to the CA mode. Secondly, we present a series of spectroscopy experiments<br />

acquired with different oscillation amplitudes, which allows us<br />

extract the velocity dependence of the dynamic friction coefficient. In<br />

fact, we will show that the velocity dependence is negligible and we will<br />

argue that hysteretic mechanisms based on atomic instabilities govern<br />

the energy dissipation in our case.<br />

O 9.10 Mo 18:00 H36<br />

Observation of the complete graphite unit cell with a lowtemperature<br />

atomic force microscope — •Stefan Hembacher 1 ,<br />

Franz J. Giessibl 1 , Jochen Mannhart 1 , and Calvin F. Quate 2 —<br />

1 Universität Augsburg, Lehrstuhl für Experimentalphysik VI, Zentrum<br />

für Elektronische Korrelationen und Magnetismus — 2 Ginzton Laboratory,<br />

Stanford University, Stanford CA 94305<br />

A new helium-temperature scanning tunneling/dynamic force microscope<br />

employing the qPlus sensor is introduced. First measurements on<br />

HOPG (highly oriented pyrolytic graphite), where the benefits of combined<br />

STM/AFM measurements at helium temperature are clearly evident,<br />

are presented. At low temperatures, thermal drift is only of the<br />

order of 25 pm/h enabling slow scanning in constant height mode. Because<br />

the noise in ∆f measurements scales as B 3/2 , tiny forces can be<br />

measured with good S/N ratio.<br />

Graphite has a hexagonal structure with two atoms in the surface unit<br />

cell. While the α-atoms have a neighbor directly underneath, the β-atoms<br />

have no direct neighbor in the layer below the surface layer. In scanning<br />

tunneling microscopy experiments, only the β-atoms are visible. In AFM,<br />

with repulsive forces, both α- and β-atoms should appear. Simultaneously<br />

recorded frequency shift and tunneling current images in constant height<br />

mode show the α- and the β-atoms in the frequency shift channel, while<br />

in the current channel only the β-atoms are observed.<br />

O 9.11 Mo 18:15 H36<br />

Atomic Force and Scanning Tunnelling Microscopy Measurements<br />

at Low Temperatures — •Markus Heyde, Maria Kulawik,<br />

Hans-Peter Rust, and Hans-Joachim Freund — Fritz-<br />

Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195<br />

Berlin, Germany<br />

Atomic force and scanning tunneling microscopy (AFM/STM) are the<br />

most important tools for the investigation of surfaces on the atomic scale<br />

in real space. While the STM is sensitive to the local density of states<br />

and requires a conductive surface, the AFM can be used also on insulating<br />

samples. Essential for achieving atomic resolution with an AFM is<br />

a force-detector with a low noise performance and enhanced sensitivity<br />

to short-range forces. For a detailed analysis and interpretation of surface<br />

structures, an image sensor with the capability to record AFM and<br />

STM image at the same surface area is highly desirable. A double quartz<br />

tuning fork sensor for low temperature ultra-high vacuum atomic force<br />

and scanning tunneling microscopy is presented. The features of the new<br />

sensor are discussed. In addition, a low temperature, low noise ac signal<br />

amplifier has been developed to pick-up the oscillation amplitude of the<br />

tuning fork. First atomic force measurements are shown, allowing for the<br />

resolution of different domains on a thin Al2O3 film on NiAl(110).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!