09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Oberflächenphysik Donnerstag<br />

with rates as high as 10 8 s −1 .<br />

[1] M. Dürr et al., Science 296, 1838 (2002).<br />

O 38.3 Do 16:15 H38<br />

Simulation der Desorption von Wasserstoff von bimetallischen<br />

PtRu-Oberflächen — •Thomas Diemant, Hubert Rauscher und<br />

R. J. Behm — Abt. Oberflächenchemie und Katalyse, Universität Ulm,<br />

D-89069 Ulm<br />

Bimetallische PtRu-Systeme finden großen Einsatz als Anodenmaterial<br />

in Niedertemperatur-Brennstoffzellen. Die Untersuchung der Adsorption<br />

und Desorption von Wasserstoff von PtRu-Oberflächen ist deshalb<br />

von besonderem Interesse. Wir haben hier die Desorption von Ptmodifizierten<br />

Ru(0001)-Oberflächen untersucht, die mit pseudomorphen<br />

Pt-Monolagen-Inseln bedeckt waren. Die Filme werden durch die Deposition<br />

von bis zu einer Monolage Platin auf einem Ru(0001)-Einkristall<br />

bei Raumtemperatur und anschließendem Erhitzen auf 900 K erzeugt.<br />

Die Morphologie und Zusammensetzung dieser PtRu-Oberflächen ist aus<br />

früheren STM-Studien bekannt. Durch Vergleich experimenteller TPD-<br />

Daten mit Simulationen auf der Basis verschiedener Modelle wird versucht,<br />

ein genaueres Szenario des Desorptionsverhaltens von diesen bimetallischen<br />

Oberflächen zu entwickeln.<br />

O 38.4 Do 16:30 H38<br />

Nitrile-functionalized molecules adsorbed on Si(001)-2x1<br />

— •Ralf Funke 1 , Stefan Kubsky 1 , Francois Rochet 2 ,<br />

Sylvie Rangan 2 , Holger Stein 1 , and Ulrich Köhler 1 —<br />

1 Experimentalphysik / Oberflächenphysik, Ruhr-Universität Bochum,<br />

44780 Bochum, Germany — 2 Laboratoire de Chimie Physique Matière<br />

et Rayonnement, Université Pierre et Marie Curie, Paris, France<br />

A controlled adsorption behaviour of organic molecules on silicon is<br />

essential for the deposition of organic layers as a first step for molecular<br />

electronics. The adsorption of acrylonitrile and allylnitrile was studied<br />

using STM at 300K and at 90K. These results were correlated with X-ray<br />

photoemission and absorption spectroscopy data. Both molecules adsorb<br />

in a non-dissociative mode. For low coverage a single adsorption site was<br />

found. In the case of acrylonitrile the molecule bridges two adjacent silicon<br />

dimer rows inducing a strong local dimer buckling in one of the rows.<br />

Bias dependent images and MO calculations are used to determine the<br />

adsorption geometry. Time resolved STM images at 90K show a flipping<br />

between local configurations of the molecule on a time scale of seconds.<br />

The four C-atoms of allylnitrile bond in a semicircle-like configuration<br />

to the silicon atoms of two neighbouring dimers in one dimer row.<br />

Whereas in the case of acrylonitrile no long range order in the adsorbate<br />

layer was found, the allylnitrile layer shows a (2x2) periodicity. The above<br />

results show that despite an identical functional CN-group in a molecule<br />

the local bonding to the silicon surface can be completely different.<br />

O 38.5 Do 16:45 H38<br />

Compression of a silver adlayer on Pt single crystal electrode<br />

— •Katrin F. Domke, Helmut Baltruschat , and Xaioyin<br />

Xaio — Institut für Physikalische Chemie, Abteilung Elektrochemie,<br />

Römerstrasse 164, 53117 Bonn<br />

The effect of coadsorption of CO on an underpotentially deposited<br />

(UPD) silver monolayer on Pt(111) and Pt(665) single crystals is investigated<br />

by means of electrochemical scanning tunneling microscopy<br />

(EC-STM) and cyclic voltammetry (CV) in 0.05 M sulfuric acid. Pure<br />

electrochemical experiments suggest that coadsorbing CO onto Pt(111)<br />

covered by a monolayer of Ag forces Ag atoms of the first UPD monolayer<br />

into a second adlayer. The present STM studies reveal the formation of<br />

Ag islands on Pt(111) and Pt(665) after coadsorption of CO. These small<br />

clusters have a narrow size distribution centered around 10 nm diameter<br />

and are of approximately 0.5 nm height. The desorption of the newly<br />

formed second Ag UPD, the oxidation of CO, and the desorption of the<br />

first Ag UPD can be detected in the corresponding CVs in three different<br />

oxidation peaks. STM images recorded afterwards show the unchanged<br />

Pt surfaces.<br />

O 38.6 Do 17:00 H38<br />

Metal diffusion on transition metal dichalcogenide surfaces —<br />

•R. Kunz und R. Adelung — Chair for Multicomponent Materials, Faculty<br />

of Engineering, Christian-Albrechts University, Kaiserstr. 2, 24143<br />

Kiel<br />

The large difference in condensation coefficient is an immanent property<br />

of layered crystals like the transition metal dichalcogenide crystals<br />

(TMDC) for many different adsorbates. It is well documented that after<br />

metal evaporation on such surfaces in UHV, various structures can<br />

be formed in a self organized processes. In order to understand why<br />

the different structures occur, a systematic study of the growth parameters,<br />

(nucleation, diffusion length, evaporated metal, influence of the<br />

substrate-crystal), is necessary. We could show that in extreme cases (Cu<br />

on metallic TaS2) diffusion length of more than 50 µm could be observed<br />

combined with a nucleation probability of almost zero. In contrast, metal<br />

diffusion (Cu) on the geometrically similar surfaces on the semiconducting<br />

(WSe2) surface show much shorter diffusion length and no diffusion<br />

limited aggregation (DLA) growth. We suggest a model to explain the<br />

different diffusion behavior as a key to understand the growth of different<br />

self organized structures on TMDC-crystals.<br />

O 38.7 Do 17:15 H38<br />

Adsorption geometry of Palladium Phthalocyanine (PdPc) on<br />

Graphite: STM and LEED investigations — •T. G. Gopakumar,<br />

M. Lackinger, F. Müller, and M. Hietschold — Chemnitz<br />

University of Technology, Institute of Physics, Solid Surfaces Analysis<br />

Group, D-09107, Chemnitz, Germany<br />

Adsorption geometry of planar Palladium Phthalocyanine (PdPc)<br />

molecules on natural graphite was studied using a variable temperature<br />

STM and LEED. PdPc films were prepared on a freshly cleaved natural<br />

graphite (0001) surface using Organic Molecular Beam Epitaxy (OMBE)<br />

under UHV conditions at room temperature. It was observed that PdPc<br />

molecules were adsorbed with their molecular planes parallel to the substrate<br />

and forming highly ordered phases with quadratic lattices. Further<br />

analysis to find the orientation of molecular super-lattice with respect to<br />

the graphite lattice vectors shows a rotation of 10 degree. For a better<br />

understanding of the submolecular contrast, the software package Gaussian<br />

98 was used to calculate the electronic structure of isolated PdPc<br />

molecules. The different STM contrast could be explained and electronic<br />

analogies were found.<br />

O 38.8 Do 17:30 H38<br />

Stability of Pd Surface Oxides at Ambient Pressures — •M.<br />

Todorova 1 , J. Rogal 1 , K. Reuter 1 , M. Scheffler 1 , E. Lundgren<br />

2 , J. Gustafson 2 , J.N. Andersen 2 , and A. Stierle 3 — 1 Fritz-<br />

Haber-Institut, Berlin — 2 Departement of Synchrotron Radiation Research,<br />

University of Lund, Sweden — 3 Max-Planck-Institut für Metallforschung,<br />

Stuttgart<br />

Using density-functional theory we study and compare the oxide formation<br />

at the Pd(111) and Pd(100) surfaces. We identify the stable<br />

phases and determine their (T, p) stability range using the concept of<br />

first-principles atomistic thermodynamics. The observed surface oxides,<br />

which only vaguely resemble their bulk counterparts, represent the most<br />

stable phase for a wide range of environmental conditions exceeding the<br />

stability range of bulk PdO by far. The corresponding overall structure<br />

of the surface phase diagram for the Pd(100) surface is in good agreement<br />

with surface X-ray diffraction (SXRD) measurements in the pressure<br />

range up to 1 bar. For T < 600K the comparison with the experimental<br />

data additionally discerns a kinetic hindrance to the formation<br />

of the bulk oxide, stabilizing the ( √ 5 × √ 5)R27 ◦ surface oxide even up<br />

to ambient pressures.<br />

O 38.9 Do 17:45 H38<br />

Adsorption and interaction of methane and ethane on the stoichiometric<br />

and oxygen rich RuO2(110) surface — •Undine Erlekam,<br />

Ursula A. Paulus, Yuemin Wang, Peter Geng, Karl<br />

Jacobi, and Gerhard Ertl — Fritz-Haber-Institut der Max-Planck-<br />

Gesellschaft, Faradayweg 4-6, D-14195 Berlin<br />

The RuO2(110) single crystal surface exposing coordinatively unsaturated<br />

Ru (Ru-cus) and oxygen (O-bridge) atoms, have been proven to<br />

be an efficient catalyst, e.g. for the oxidation of CO [1]. An O-enriched<br />

RuO2(110) surface is obtained by dissociative adsorption of O2 on the<br />

stoichiometric surface giving rise to weakly bonded O-cus atoms on top<br />

of Ru-cus.<br />

In this study we investigated the adsorption and interaction of low hydrocarbons<br />

such as methane and ethane on the RuO2(110) surfaces both<br />

the stoichiometric and the O-rich ones in order to determine whether<br />

or not low hydrocarbons can be oxidized under UHV-conditions. Due<br />

to the weak adsorption of low hydrocarbons (physisorption) the sample<br />

was cooled with liquid nitrogen. The techniques applied are highresolution<br />

electron energy-loss spectroscopy (HREELS) and thermal desorption<br />

spectroscopy (TDS) in combination with isotopic labeling exper-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!