09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Metallphysik Donnerstag<br />

M 23 Hauptvortrag Dieter Brunner<br />

Zeit: Donnerstag 09:30–10:00 Raum: H16<br />

Hauptvortrag M 23.1 Do 09:30 H16<br />

Plasticity in body-centred cubic structures with emphasis on<br />

low-temperature behaviour — •Dieter Brunner — Max-Planck-<br />

Institut für Metallforschung, Heisenbergstrasse 3, 70569 Stuttgart<br />

Materials crystallizing in the body-centred cubic (bcc) structure exhibit<br />

plastic behaviour which differs impressively from that of differently<br />

structured materials. The different behaviour is related to different slip<br />

and work hardening mechanisms. The dependence of the yield stress on<br />

temperature, strain-rate, and both the concentration and configuration<br />

of atomic lattice defects is very pronounced in contrast to fcc materials.<br />

These differences are particularly large in the low-temperature regime<br />

below a characteristic temperature TK. At low temperatures, high purity<br />

and sufficiently small sample dimensions are prerequisites for tensile<br />

M 24 Nanoskalige Materialien III<br />

tests. In the talk, relevant results of measurements with single crystals<br />

of the metals α-Fe, Mo, W, Nb, Ta, the intermetallic alloy NiAl, the alkali<br />

metal potassium, and the oxide ceramic SrTiO3 will be addressed.<br />

The crucial point in the interpretation of the plasticity of bcc metals,<br />

for example, is based on < 111 >a0/2 screw dislocations whose motion<br />

governs the plastic behaviour and which possess a non-planar core structure.<br />

Accordingly, they are rather sessile but can be moved by thermally<br />

activated kink-pair formation on screw dislocations. Seeger’s kink-pair<br />

theory developed in the 1980s has proved to be in excellent agreement<br />

with the experimental results. Applying this model enables the macroscopic<br />

behaviour to be described in terms of few kink parameters that can<br />

be determined from deformation experiments for the above mentioned<br />

materials.<br />

Zeit: Donnerstag 10:15–11:15 Raum: H16<br />

M 24.1 Do 10:15 H16<br />

Melting behavior of Pb and In nanoparticles dispersed in AlYFe<br />

matrix — •Nancy Boucharat, Harald Roesner, and Gerhard<br />

Wilde — Forschungszentrum Karlsruhe, Institute of Nanotechnology,<br />

Postfach 3640, 76021 Karlsruhe<br />

Nanocomposites consisting of nanoscale Pb or In particles dispersed<br />

within a crystalline Al matrix have attracted particular attention since<br />

considerable deviations in the Pb and In melting temperatures have<br />

been observed compared to that of the bulk. Beyond the nano-size effect,<br />

several proposals involving contributions of the crystalline matrix<br />

(e.g. grain boundaries, strains and defects, lattice orientation relationship)<br />

have been advanced to account for the modified melting behavior.<br />

Thus, the incorporation of Pb and In nanoparticles in marginal glass<br />

formers gives a new opportunity to wider the understanding of the impact<br />

of the matrix on the melting behavior, especially to study the sizedependent<br />

melting behavior without the constraints imposed on the particles<br />

by a crystalline matrix. Therefore, the melting behavior of Pb and<br />

In nanoparticles embedded in rapidly quenched AlYFe glass have been<br />

investigated by calorimetry and structural analyses. The results indicate<br />

a general decrease of both melting temperatures. Moreover, the shift of<br />

melting temperatures was found to be strongly correlated to the matrix<br />

microstructure, i.e. whether the matrix is in an amorphous state, contains<br />

Al-nanocrystal dispersions or is in a fully crystallised state.<br />

M 24.2 Do 10:30 H16<br />

Analysis of nanocrystalline CuBi-layers — •Daniel Wolde-<br />

Giorgis, Talaát Al-Kassab und Reiner Kirchheim — Universität<br />

Göttingen, Institut für Materialphysik, Tammanstraße 1, 37077 Göttingen<br />

The segregation behaviour of Bi in nanocrystalline Cu-layers was investigated<br />

by means of the tomographic atom probe (TAP) and field ion<br />

microscopy (FIM). The investigated layers were prepared by sputter deposition<br />

on W-substrates. These substrates have the shape of tips with a<br />

radius of curvature of up to 60nm. Using a Kaufmann Ar-ionsource and<br />

a deposition rate of 0.4 ˚A, we obtain a nanocrystalline CuBi-layer. FIM<br />

analyses confirm the nanocrystalline structure of the deposited layers.<br />

TAP analyses show an increased concentration of Bi. This value is about<br />

two orders of magnitude higher than the solubility of Bi in Cu which<br />

amounts up to 100ppm at 577K. A strong segregation at grain boundaries<br />

is expected to occur while annealing. These supersaturated CuBi<br />

alloys are therefore ideal model systems for the investigation of the microstructural<br />

development.<br />

M 24.3 Do 10:45 H16<br />

Thermal reaction and stability of GMR Cu/NiFe thin films —<br />

•Constantin Buzau Ene 1 , Guido Schmitz 2 , and Reiner Kirchheim<br />

1 — 1 Tammann-Str. 1, D-37077 Göttingen — 2 Wilhelm-Klemm-Str.<br />

10, D-48149 Münster<br />

In recent years reading heads based on the giant magnetoresistance effect<br />

(GMR) made possible a dramatic increase in magnetic recording density.<br />

However, for many potential applications the thermal stability of the<br />

magnetic multilayers are an important issue. In our study Cu/Ni79Fe21<br />

(permalloy) multilayer stacks were deposited onto needle-shaped W tips<br />

by ion beam sputtering and analyzed by atom probe tomography after<br />

appropriate heat treatments. This analysis technique has been proven<br />

to yield a real three-dimensional quantitative chemical and structural<br />

analysis at a subnanometer scale.<br />

After annealing at 250 ◦ C for 30min, no significant structural or chemical<br />

transformation of the initial layer system is detected, although such a<br />

heat treatment reduces the magnetoresistivity already appreciably. Clear<br />

grain boundary wetting is observed after annealing at 400 ◦ C for 30min.<br />

Further annealing at 500 ◦ C for 20min and 40min still preserves the layered<br />

structure with a homogeneous solution of Ni inside the Cu layers of<br />

up to 25 at.% Ni.<br />

M 24.4 Do 11:00 H16<br />

Strukturelle und magnetische Eigenschaften von Nd60Fe30Al10:<br />

massive Proben, Splat-cooled und dünne Schichten — •A. Bracchi<br />

1 , K. Samwer 1 , T. Niermann 2 , M. Seibt 2 und S. Schneider 2<br />

— 1 I. Physikalisches Institut, Universität Göttingen, Tammannstr. 1, D-<br />

37077 Göttingen — 2 IV. Physikalisches Institut, Universität Göttingen,<br />

Tammannstr. 1, D-37077 Göttingen<br />

Dünne Schichten, schnell abgekühlte Folien und massive Proben<br />

der Zusammensetzung Nd60Fe30Al10 wurden mit unterschiedlichen<br />

Präparationsmethoden hergestellt, wobei Abkühlraten zwischen 10 K/s<br />

und 10 10 K/s erreicht wurden. Strukturelle und magnetische Eigenschaften<br />

wurden mittels Hochenergie-Weitwinkel-Röntgen-Diffraktometrie,<br />

Kleinwinkelneutronenstreuung (SANS), hochauflösender Elektronenmikroskopie<br />

(HRTEM) und SQUID Magnetometer Messungen<br />

untersucht. Die SANS Untersuchungen wurden mit und ohne Magnetfeld<br />

durchgeführt, um den Kern-Beitrag von der magnetischen<br />

Streuung zu trennen. Die Mikrostruktur zeigt ein fraktales Verhalten<br />

mit Massen-Fraktaldimension zwischen 2.3 und 2.5, was auf eine<br />

Phasenseparation in der unterkühlten Schmelze zurückgeführt werden<br />

kann. Die Wechselwirkung von domain-wall-pinning Prozessen und<br />

magnetischer Kopplung zwischen zwei unterschiedlichen magnetischen<br />

Phasen wird diskutiert und die Abhängigkeit der Curietemperatur von<br />

der Abkühlrate wird berücksichtigt, um das magnetische Verhalten der<br />

massiven Proben und der Nd60Fe30Al10 Schichten zu erklären.<br />

Gefördert von der DFG in Rahmen des SFB 602 (TP A5) und vom<br />

Land Niedersachsen durch das “Georg Lichtenberg Programm”.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!