09.12.2012 Views

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

Plenarvorträge - DPG-Tagungen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Arbeitskreis Biologische Physik Freitag<br />

AKB 50.19 Fr 10:30 B<br />

Far-infrared spectroscopy of α amino acids — •Adriana Matei,<br />

Natalia Drichko, Bruno Gompf, and Martin Dressel —<br />

1.Physikalisches Institut, Universität Stuttgart<br />

In contrast to covalent bonds, which leads to intramolecular vibrations<br />

in mid-infrared, low energy interactions such as hydrogen bonds and van<br />

der Waals forces can lead to intermolecular vibrations in far-infrared<br />

(THz-range).<br />

We report on FTIR measurements of a large number of amino acids<br />

prepared as pellets in a polyethylene matrix in the region 50-650 cm −1 .<br />

The observed absorption peaks can be related to five regions: the region<br />

around 600 cm −1 (CO2 wagging), around 540 cm −1 (NH3 torsion and<br />

CO2 rocking/wagging/bending), the one at 320 cm −1 (CC α N deformation),<br />

and the one at 200 cm −1 (CO2 torsion and CC α N deformation).<br />

The features between 50 and 200 cm −1 are intermolecular vibrations due<br />

to hydrogen bonds. Starting from previous normal mode calculations, an<br />

assignment of the observed vibration frequencies is possible.<br />

AKB 50.20 Fr 10:30 B<br />

Transverse fluctuations of grafted polymers — •Gianluca Lattanzi<br />

1 , Tobias Munk 2 , and Erwin Frey 1,2 — 1 Abteilung Theoretische<br />

Physik SF5, Hahn-Meitner Institut Berlin — 2 Fachbereich Physik,<br />

Freie Universität Berlin<br />

We explore the mechanical properties of a single polymer filament with<br />

arbitrary stiffness in a two dimensional embedding space with Monte<br />

Carlo simulations. Clamping one end of the filament induces non trivial<br />

effects on the distribution of the second end, supposed free. The reduced<br />

distribution in the transverse direction shows an anomalous double<br />

peak structure that hallmarks the semiflexible parameter range. This<br />

phenomenon represents a challenge for analytical theories of semiflexible<br />

polymers and should be easily detectable for a number of experimental<br />

situations involving F-Actin, Microtubules, DNA or coiled-coils in the<br />

dimerization domain of kinesin and in myosin V. In addition, we explore<br />

the response of the filament to a transverse force applied at its free end.<br />

AKB 50.21 Fr 10:30 B<br />

Structure control in living bone — •Markus A. Hartmann 1 ,<br />

Richard Weinkamer 1 , Yves Brechet 2 , and Peter Fratzl 1 —<br />

1 Max-Planck-Institute of Colloids and Interfaces, Dept. of Biomaterials,<br />

14476 Potsdam, Germany — 2 Laboratory of Thermodynamics and Metallurgical<br />

Physico-Chemistry/ENSEEG, Grenoble, France<br />

Living bone is an example of a biological system, where the structure is<br />

reacting to mechanical load and controlled by a biological feedback loop.<br />

Specialised cells form new bone where the mechanical stimulus is high<br />

and others dissolve it, where the stimulus is low (Wolff-Roux law). We<br />

use a lattice model and a simple mechanical procedure to evaluate local<br />

stresses to study trabecular bone remodelling in a human vertebra. Starting<br />

from a homogenous, isotropic configuration, a network-like structure<br />

emerges, with struts mainly in vertical and horizontal directions resembling<br />

natural bone. With time, the bone volume fraction reaches a steady<br />

state value independent of initial conditions, while some struts thicken<br />

at the expense of others (coarsening) favouring the vertical main loading<br />

direction. Our simulations provide a mechanistic explanation for some<br />

features typically observed in ageing and disease.<br />

AKB 50.22 Fr 10:30 B<br />

Stability of adhesion clusters under constant force: a stochastic<br />

analysis — •Thorsten Erdmann and Ulrich S. Schwarz —<br />

Max Planck Institute of Colloids and Interfaces, Theory Division, 14424<br />

Potsdam<br />

Cells in multicellular organisms adhere to the extracellular matrix and<br />

to other cells through two-dimensional clusters of transmembrane adhesion<br />

receptors, which usually have to operate under mechanical load.<br />

We present a theoretical model which allows to study the stability of<br />

multiple parallel bonds under shared constant loading. The dynamics of<br />

thermally activated bond rupture and rebinding is modelled by a one-step<br />

Master equation with an absorbing boundary for the completely dissociated<br />

state. For small forces and weak rebinding, mean cluster lifetime<br />

grows only logarithmically with bond number. For strong rebinding, this<br />

dependence becomes exponential, thus rebinding is a very efficient way<br />

to stabilise adhesion clusters. For intermediate forces, a small increase in<br />

force leads to a large reduction in mean cluster lifetime. This allows cells<br />

to switch the stability of cell-matrix adhesions by loading through the<br />

cytoskeleton.<br />

AKB 50.23 Fr 10:30 B<br />

Probing molecular free energy landscapes by periodic loading<br />

— •Oliver Braun 1 , Andreas Hanke 1,2 , and Udo Seifert 1 —<br />

1 Institute for Theoretical Physics II, University of Stuttgart, Pfaffenwaldring<br />

57, D-70550 Stuttgart, Germany — 2 Theoretical Physics Department,<br />

University of Oxford, 1 Keble Road, OX1 3NP Oxford, United<br />

Kingdom<br />

Recent experimental developments of highly sensitive force probes such<br />

as atomic force microscopy, optical or magnetic tweezers and biomembrane<br />

force probes allow one to manipulate a single biological macromolecule.<br />

The free energy landscape along its end-to-end distance, which<br />

is governed by molecular forces and self-interactions, may be recovered by<br />

applying time-dependent forces. Previous experiments have mostly used<br />

a linear force ramp.<br />

Using periodically modulated forces we show how to reconstruct this<br />

free energy landscape more efficiently. A central tool is Jarzynski’s identity,<br />

which allows us to recover equilibrium quantities from the statistics<br />

of non-equilibrium experimental data. As a main advantage, our method<br />

also yields the convex unstable part of the free energy surface, where<br />

the linear ramp protocol provides poor results. The quality of the reconstruction<br />

depends crucially on the frequency of the periodic forcing. Best<br />

results were obtained at frequencies of the order of the transition rates<br />

between adjacent meta-stable configurations.<br />

AKB 50.24 Fr 10:30 B<br />

Dynamics of Eukaryotic Flagella — •Andreas Hilfinger 1 ,<br />

Ingmar Riedel 2 , Amit Chattopadhyay 1 , Karsten Kruse 1 ,<br />

Jonathon Howard 2 , and Frank Jülicher 1 — 1 Max-Planck-<br />

Institute for Physics of Complex Systems, D-01187 Dresden, Germany<br />

— 2 Max-Planck-Institute of Molecular Cell Biology and Genetics,<br />

D-01307 Dresden, Germany<br />

Many types of sperm swim in a viscous environment by beating a<br />

whiplike appendage called the flagellum. The flagellum contains a highly<br />

conserved structure called the axoneme, whose characteristic architecture<br />

is based on a cylindrical arrangement of long elastic filaments composed<br />

of microtubules. The microtubules in adjacent filaments are coupled by<br />

the molecular motor dynein. In the presence of ATP these motor proteins<br />

exert shear forces on neighbouring microtubules. The shear forces lead<br />

to bending of the axoneme because microtubule sliding near the sperm<br />

head is constrained by additional crosslinking proteins. Here we discuss<br />

how regular beating patterns can emerge as nonlinear waves due to internal<br />

stresses that are generated by a large ensemble of molecular motors<br />

working within such an elastic structure. We compare our results with<br />

experimentally observed beating patterns and analyse dynamic force distributions<br />

in active bull sperm flagella.<br />

AKB 50.25 Fr 10:30 B<br />

Ab initio - Berechnungen von elektrischen Feldgradienten in<br />

biologischen Molekülen — •Frank Heinrich und Wolfgang<br />

Tröger — Institut für Experimentelle Physik II, Universität Leipzig<br />

Die Messung des elektrischen Feldgradienten (EFG) am Ort einer<br />

nuklearen Sonde ist über die Kernquadrupolwechselwirkung<br />

mit verschiedenen Verfahren möglich, wie z.B. NMR oder γ-γ-<br />

Winkelkorrelationsspektroskopie (TDPAC). Die Interpretation von Daten<br />

des elektrischen Feldgradienten erfolgt in der Regel durch die Verwendung<br />

von bekannten EFGs einiger Modellverbindungen mit bekannter<br />

atomarer Struktur. Ab initio-Berechnungen des EFG sind eine Alternative,<br />

um mutmaßliche chemische Strukturen zu überprüfen. Moderne<br />

Dichte-Funktional-Programme, wie ADF (Amsterdam Density Functional<br />

Code), ermöglichen auch quantenmechanische Berechnungen von<br />

großen biologischen Molekülen. Es wurden für verschiedene Klassen von<br />

Molekülen (Mercaptide, Thiokronenether) mit bis zu etwa 100 Atomen<br />

die mit TDPAC ermittelten EFGs reproduziert. Damit wurde die Grundlage<br />

geschaffen, um EFGs in Makromolekülen zu berechnen und offene<br />

Probleme der Ligandierung von Metallzentren in Proteinen zu klären.<br />

AKB 50.26 Fr 10:30 B<br />

204m Pb: Eine ” neue“ isomere TDPAC-Sonde — •Frank Heinrich<br />

1 , Wolfgang Tröger 1 und Heinz Haas 2 — 1 Institut für Experimentelle<br />

Physik II, Universität Leipzig — 2 Hahn-Meitner-Institut,<br />

Berlin<br />

Am Massenseparator ISOLDE/CERN steht seit kurzer Zeit das Bleiisotop<br />

204m Pb (t1/2 = 67 min) für TDPAC-Messungen (zeitdifferentielle<br />

gestörte γ-γ-Winkelkorrelation) zur Verfügung. In ersten Experimenten<br />

konnten einige 204m Pb(II)-Komplexe aus wässrigen Lösungen präpariert

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!