21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

(Linear) generalized eigenvalue problem:<br />

Given A ∈ C n,n , regular B ∈ C n,n , seek x ≠ 0, λ ∈ C<br />

Ax = λBx ⇔ B −1 Ax = λx . (5.1.3)<br />

x ˆ= generalized eigenvector, λ ˆ= generalized eigenvalue<br />

Obviously every generalized eigenvalue problem is equivalent to a standard eigenvalue problem<br />

Ax = λBx ⇔ B −1 A = λx .<br />

QR-algorithm (with shift)<br />

in general: quadratic convergence<br />

cubic convergence for normal<br />

matrices<br />

(→ [18, Sect. 7.5,8.2])<br />

Code 5.2.2: QR-algorithm with shift<br />

1 function d = e i g q r (A, t o l )<br />

2 n = size (A, 1 ) ;<br />

3 while (norm( t r i l (A,−1) ) > t o l ∗norm(A) )<br />

4 s h i f t = A( n , n ) ;<br />

5 [Q,R] = qr ( A − s h i f t ∗ eye ( n ) ) ;<br />

6 A = Q’∗A∗Q;<br />

7 end<br />

8 d = diag (A) ;<br />

However, usually it is not advisable to use this equivalence for numerical purposes!<br />

Computational cost:<br />

O(n 3 ) operations per step of the QR-algorithm<br />

Remark 5.1.1 (Generalized eigenvalue problems and Cholesky factorization).<br />

If B = B H s.p.d. (→ Def. 2.7.1) with Cholesky factorization B = R H R<br />

Ax = λBx ⇔ Ãy = λy where à := R−H AR −1 , y := Rx .<br />

★<br />

✧<br />

Library implementations of the QR-algorithm provide numerically stable<br />

eigensolvers (→ Def.2.5.5)<br />

✥<br />

✦<br />

➞<br />

This transformation can be used for efficient computations.<br />

△<br />

Ôº¼½ º¾<br />

Remark 5.2.3 (Unitary similarity transformation to tridiagonal form).<br />

△<br />

Ôº¼¿ º¾<br />

5.2 “Direct” Eigensolvers<br />

Successive Householder similarity transformations of A = A H :<br />

(➞ ˆ= affected rows/columns, ˆ= targeted vector)<br />

Purpose:<br />

solution of eigenvalue problems ➊, ➋ for dense matrices “up to machine precision”<br />

0 0<br />

0 0<br />

0 0<br />

0<br />

0<br />

0<br />

0<br />

MATLAB-function:<br />

eig<br />

−→<br />

0<br />

−→<br />

0<br />

0<br />

−→<br />

0<br />

0<br />

0<br />

0<br />

0<br />

d = eig(A) : computes spectrum σ(A) = {d 1 ,...,d n } of A ∈ C n,n<br />

[V,D] = eig(A) : computes V ∈ C n,n , diagonal D ∈ C n,n such that AV = VD<br />

Remark 5.2.1 (QR-Algorithm). → [18, Sect. 7.5]<br />

Note:<br />

All “direct” eigensolvers are iterative methods<br />

0<br />

0 0<br />

0 0 0<br />

transformation to tridiagonal form ! (for general matrices a similar strategy can achieve a<br />

similarity transformation to upper Hessenberg form)<br />

this transformation is used as a preprocessing step for QR-algorithm ➣ eig.<br />

△<br />

Idea: Iteration based on successive unitary similarity transformations<br />

⎧<br />

⎪⎨ diagonal matrix , if A = A H ,<br />

A = A (0) −→ A (1) −→ ... −→ upper triangular matrix , else.<br />

⎪⎩<br />

(→ Thm. 5.1.6)<br />

(superior stability of unitary transformations, see Rem. 2.8.1)<br />

Ôº¼¾ º¾<br />

Ôº¼ º¾<br />

[V,D] = eig(A,B) : computes V ∈ C n,n , diagonal D ∈ C n,n such that AV = BVD<br />

Similar functionality for generalized EVP Ax = λBx, A,B ∈ C n,n<br />

d = eig(A,B)<br />

: computes all generalized eigenvalues

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!