21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Random 8 × 8 circulant matrices C 1 , C 2 (→<br />

Def. 7.1.3)<br />

Generated by MATLAB-command:<br />

C = gallery(’circul’,rand(n,1));<br />

eigenvalues ✄<br />

eigenvalue<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

C 1<br />

: real(ev)<br />

C 1<br />

: imag(ev)<br />

C 2<br />

: real(ev)<br />

C 2<br />

: imag(ev)<br />

−2<br />

0 1 2 3 4 5 6 7 8 9<br />

index of eigenvalue<br />

Fig. 91<br />

vector component value<br />

Circulant matrix 2, eigenvector 5<br />

Circulant matrix 2, eigenvector 6<br />

0.4<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

−0.3<br />

real part<br />

real part<br />

imaginary part<br />

imaginary part<br />

−0.4<br />

−0.4<br />

1 2 3 4 5 6 7 8<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

vector component index<br />

vector component value<br />

vector component value<br />

Circulant matrix 2, eigenvector 7<br />

Circulant matrix 2, eigenvector 8<br />

0.4<br />

0.4<br />

0.3<br />

0.3<br />

0.2<br />

0.2<br />

0.1<br />

0.1<br />

0<br />

0<br />

−0.1<br />

−0.1<br />

−0.2<br />

−0.2<br />

−0.3<br />

−0.3<br />

real part<br />

real part<br />

imaginary part<br />

imaginary part<br />

−0.4<br />

−0.4<br />

1 2 3 4 5 6 7 8<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

vector component index<br />

Observation: the different random circulant matrices have the same eigenvectors!<br />

Eigenvectors of C = gallery(’circul’,(1:128)’); :<br />

random 256x256 circulant matrix, eigenvector 2<br />

random 256x256 circulant matrix, eigenvector 3<br />

random 256x256 circulant matrix, eigenvector 5<br />

random 256x256 circulant matrix, eigenvector 8<br />

0.1<br />

0.1<br />

0.1<br />

0.1<br />

vector component value<br />

Little relationship between (complex!) eigenvalues can be observed, as can be expected from random<br />

matrices with entries ∈ [0, 1].<br />

vector component value<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

vector component value<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

vector component value<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

vector component value<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

−0.02<br />

−0.04<br />

−0.06<br />

−0.06<br />

−0.06<br />

−0.06<br />

Eigenvectors of matrix C 1 :<br />

Ôº º¾<br />

−0.08<br />

real part<br />

imaginary part<br />

−0.1<br />

0 20 40 60 80 100 120 140<br />

vector component index<br />

−0.08<br />

real part<br />

imaginary part<br />

−0.1<br />

0 20 40 60 80 100 120 140<br />

vector component index<br />

−0.08<br />

real part<br />

imaginary part<br />

−0.1<br />

0 20 40 60 80 100 120 140<br />

vector component index<br />

−0.1<br />

0 20 40 60 80 100 120 140<br />

vector component index<br />

The eigenvectors remind us of sampled trigonometric functions cos(k/n), sin(k/n), k = 0,...,n−1!<br />

−0.08<br />

real part<br />

imaginary part<br />

Ôº º¾<br />

✸<br />

0<br />

−0.05<br />

−0.1<br />

Circulant matrix 1, eigenvector 1<br />

0.4<br />

0.3<br />

0.2<br />

Circulant matrix 1, eigenvector 2<br />

0.4<br />

0.3<br />

0.2<br />

Circulant matrix 1, eigenvector 3<br />

0.4<br />

0.3<br />

0.2<br />

Circulant matrix 1, eigenvector 4<br />

Remark 7.2.3 (Why using K = C?).<br />

vector component value<br />

−0.15<br />

−0.2<br />

−0.25<br />

vector component value<br />

0.1<br />

0<br />

−0.1<br />

vector component value<br />

0.1<br />

0<br />

−0.1<br />

vector component value<br />

0.1<br />

0<br />

−0.1<br />

Ex. 7.2.1:<br />

complex eigenvalues/eigenvectors for general circulant matrices.<br />

−0.3<br />

−0.2<br />

−0.2<br />

−0.2<br />

−0.35<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.3<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.3<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.3<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

Recall from analysis:<br />

unified treatment of trigonometric functions via complex exponential function<br />

0.4<br />

Circulant matrix 1, eigenvector 5<br />

0.4<br />

Circulant matrix 1, eigenvector 6<br />

0.4<br />

Circulant matrix 1, eigenvector 7<br />

0.4<br />

Circulant matrix 1, eigenvector 8<br />

exp(it) = cos(t) + i sin(t) , t ∈ R .<br />

vector component value<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

vector component value<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

vector component value<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

vector component value<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

C!<br />

The field of complex numbers C is the natural framework for the analysis of linear, timeinvariant<br />

filters, and the development of algorithms for circulant matrices.<br />

△<br />

−0.2<br />

−0.2<br />

−0.2<br />

−0.2<br />

−0.3<br />

−0.3<br />

−0.3<br />

−0.3<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

Eigenvectors of matrix C 2<br />

✎ notation: nth root of unity ω n := exp(−2πi/n) = cos(2π/n) − i sin(2π/n), n ∈ N<br />

vector component value<br />

0<br />

−0.05<br />

−0.1<br />

−0.15<br />

−0.2<br />

−0.25<br />

−0.3<br />

−0.35<br />

Circulant matrix 2, eigenvector 1<br />

vector component value<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

Circulant matrix 2, eigenvector 2<br />

vector component value<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

Circulant matrix 2, eigenvector 3<br />

vector component value<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

Circulant matrix 2, eigenvector 4<br />

Ôº º¾<br />

satisfies<br />

ω n = ωn −1 , ωn n = 1 , ωn<br />

n/2<br />

n−1 ∑<br />

ωn kj =<br />

k=0<br />

{<br />

n , if j = 0 mod n ,<br />

0 , if j ≠ 0 mod n .<br />

= −1 , ω k n = ω k+n n ∀ k ∈ Z , (7.2.1)<br />

(7.2.2)<br />

Ôº¼ º¾<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index<br />

−0.4<br />

real part<br />

imaginary part<br />

1 2 3 4 5 6 7 8<br />

vector component index

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!