21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Observations:<br />

Strong oscillations of I T f near the endpoints of the interval:<br />

‖f − I T f‖ L ∞ (]−5,5[)<br />

How can this be reconciled with Thm. 8.4.2 ?<br />

n→∞<br />

−−−−→ ∞ .<br />

Beware: same concept ↔ different meanings:<br />

• convergence of a sequence (e.g. of iterates x (k) → Sect. 3.1 )<br />

• convergence of an approximation (dependent on an approximation parameter, e.g. n)<br />

Here f(t) = 1<br />

1+t 2 implies |f (n) (t)| = 2 n n! · O(|t| −2−n ) .<br />

➙ The error bound from Thm. 8.4.1 → ∞ for n → ∞.<br />

✬<br />

Theorem 8.4.1 (Representation of interpolation error).<br />

f ∈ C n+1 (I): ∀ t ∈ I: ∃ τ t ∈] min{t,t 0 , ...,t n }, max{t,t 0 , ...,t n }[:<br />

✩<br />

✸<br />

f(t) − I T (f)(t) = f(n+1) (τ t )<br />

(n + 1)!<br />

·<br />

n∏<br />

(t − t j ) . (8.4.2)<br />

j=0<br />

✫<br />

✪<br />

The theorem can also be proved using the following lemma.<br />

✬<br />

✩<br />

✬<br />

Classification (best bound for T(n)):<br />

✫<br />

∃ C ≠ C(n): ‖f − I T f‖ ≤ C T(n) for n → ∞ . (8.4.1)<br />

∃ p > 0: T(n) ≤ n −p : algebraic convergence, with rate p > 0 ,<br />

✩<br />

º ✪<br />

∃ 0 < q < 1: T(n) ≤ q n : exponential convergence .<br />

Ôº<br />

Remark 8.4.4 (Exploring convergence).<br />

Given: pairs (n i , ǫ i ), i = 1, 2, 3,..., n i ˆ= polynomial degrees, ǫ i ˆ= norms of interpolation error<br />

Lemma 8.4.2 (Error of the polynomial interpolation). For f ∈ C n+1 (I): ∀ t ∈ I:<br />

∫1 ∫ 1 ∫<br />

f(t) − I T (f)(t) = · · ·<br />

0 0τ<br />

0<br />

✫<br />

τ n−1∫<br />

n<br />

0τ<br />

f (n+1) (t 0 + τ 1 (t 1 − t 0 ) + · · ·<br />

n∏<br />

+ τ n (t n − t n−1 ) + τ(t − t n )) dτdτ n · · · dτ 1 ·<br />

j=0<br />

Ôº º<br />

(t − t j ) .<br />

Proof. By induction on n, use (8.3.2) and the fundamental theorem of calculus [34, Sect. 3.1]:<br />

Remark 8.4.5. Lemma 8.4.2 holds also for Hermite Interpolation.<br />

△<br />

✪<br />

➊ Conjectured: algebraic convergence: ǫ i ≈ Cn −p<br />

log(ǫ i ) ≈ log(C) − p log n i (affine linear in log-log scale).<br />

Apply linear regression ( MATLAB polyfit) to points (log n i , log ǫ i ) ➣ estimate for rate p.<br />

➊ Conjectured: exponential convergence: ǫ i ≈ C exp(−βn i )<br />

Remark 8.4.6 (L 2 -error estimates).<br />

Interpolation error estimate requires smoothness!<br />

Thm. 8.4.1 gives error estimates for the L ∞ -Norm. And the other norms?<br />

log ǫ i ≈ log(C) − βn i (affine linear in lin-log scale). .<br />

Apply linear regression ( MATLAB polyfit) to points (n i , log ǫ i ) ➣ estimate for q := exp(−β).<br />

△<br />

Ôº º<br />

From Lemma. 8.4.2 using Cauchy-Schwarz inequality:<br />

∫<br />

∫1 ∫ τ 1 τ∫<br />

n−1 ∫ τ n<br />

‖f − I T (f)‖ 2 L 2 (I) = n∏<br />

2<br />

· · · f (n+1) (...) dτdτ<br />

∣<br />

n · · · dτ 1 · (t − t j )<br />

dt<br />

∣<br />

I 0 0 0 0<br />

j=0<br />

} {{ }<br />

|t−t j |≤|I|<br />

∫<br />

≤<br />

I<br />

∫<br />

|I| 2n+2 vol (n+1) (S n+1 ) |f (n+1) (...)| 2 dτ dt<br />

} {{ } S n+1<br />

=1/(n+1)!<br />

Ôº º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!