21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Assuming<br />

p = 1:<br />

p > 1:<br />

∥<br />

C ∥e (0)∥ ∥p−1 < 1 (guarantees convergence):<br />

∥<br />

∥e (k)∥ ∥ ∥<br />

!<br />

≤ C k ∥ ∥ ∥e<br />

(0) ∥ ∥ ∥ requires k ≥<br />

log ρ<br />

∥<br />

∥e (k)∥ ∥ !<br />

≤ C pk −1<br />

p−1<br />

log C , (3.3.9)<br />

∥<br />

∥e (0)∥ ∥p k requires p k log ρ<br />

≥ 1 +<br />

∥<br />

∥<br />

log C/p−1 + log( ∥e (0) ∥∥)<br />

⇒<br />

k ≥ log(1 + log ρ<br />

log L 0<br />

)/ log p ,<br />

L 0 := C 1/p−1 ∥ ∥∥e (0) ∥ ∥ ∥ < 1 .<br />

(3.3.10)<br />

If ρ ≪ 1, then log(1 + log ρ<br />

log L 0<br />

) ≈ log | log ρ| − log | log L 0 | ≈ log | log ρ|. This simplification will be<br />

made in the context of asymptotic considerations ρ → 0 below.<br />

➣<br />

W Newton = 2W secant ,<br />

p Newton = 2, p secant = 1.62<br />

3.4 Newton’s Method<br />

log p<br />

⇒ Newton<br />

W Newton<br />

secant method is more efficient than Newton’s method!<br />

: log p secant<br />

W secant<br />

= 0.71 .<br />

Non-linear system of equations: for F : D ⊂ R n ↦→ R n find x ∗ ∈ D: F(x ∗ ) = 0<br />

Assume: F : D ⊂ R n ↦→ R n continuously differentiable<br />

✸<br />

Notice: | log ρ| ↔ No. of significant digits of x (k)<br />

Measure for efficiency:<br />

no. of digits gained<br />

Efficiency :=<br />

total work required<br />

asymptotic efficiency w.r.t. ρ → 0 ➜ | log ρ| → ∞):<br />

⎧<br />

⎪⎨ − log C , if p = 1 ,<br />

Efficiency |ρ→0 =<br />

W<br />

log p| log ρ| ⎪⎩<br />

, if p > 1 .<br />

W log | log ρ|<br />

Example 3.3.12 (Efficiency of iterative methods).<br />

max(no. of iterations), ρ = 1.000000e−08<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

C = 0.5<br />

C = 1.0<br />

C = 1.5<br />

C = 2.0<br />

0<br />

1 1.5 2 2.5<br />

p<br />

Fig. 37<br />

∥<br />

Evaluation (3.3.10) for ∥e (0)∥ ∥ = 0.1, ρ = 10 −8<br />

no. of iterations<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

=<br />

| log ρ|<br />

k(ρ) · W<br />

Ôº¾ ¿º¿<br />

(3.3.11)<br />

(3.3.12)<br />

Newton method<br />

secant method<br />

0<br />

0 2 4 6 8 10<br />

−log (ρ) 10 Fig. 38<br />

Newton’s method ↔ secant method, C = 1,<br />

∥<br />

initial error ∥e (0)∥ ∥ = 0.1<br />

Ôº¾ ¿º¿<br />

3.4.1 The Newton iteration<br />

Idea (→ Sect. 3.3.2.1):<br />

Given x (k) ∈ D ➣<br />

local linearization:<br />

x (k+1) as zero of affine linear model function<br />

F(x) ≈ ˜F(x) := F(x (k) ) + DF(x (k) )(x − x (k) ) ,<br />

(<br />

DF(x) ∈ R n,n ∂Fj n<br />

= Jacobian (ger.: Jacobi-Matrix), DF(x) = (x))<br />

.<br />

∂x k j,k=1<br />

Newton iteration: (↔ (3.3.1) for n = 1)<br />

Terminology:<br />

x (k+1) := x (k) −DF(x (k) ) −1 F(x (k) ) , [ if DF(x (k) ) regular ] (3.4.1)<br />

−DF(x (k) ) −1 F(x (k) ) = Newton correction<br />

Ôº¾ ¿º<br />

Ôº¿¼¼ ¿º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!