21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Mapping a ∈ K n to a multiple of e 1 by n − 1 successive Givens rotations:<br />

⎛<br />

⎛ ⎞ ⎛<br />

a 1<br />

a (1) ⎞<br />

a (2) ⎞<br />

⎛<br />

.<br />

1 1 a (n−1) ⎞<br />

G ⎜ .<br />

12 (a 1 ,a 2 )<br />

0 G<br />

⎟ −−−−−−−→<br />

⎜ a 13 (a (1)<br />

0 1 1 ,a 3)<br />

3 ⎟ −−−−−−−−→<br />

0<br />

G 14 (a (2)<br />

1 ,a 4) G 1n (a (n−2)<br />

0 1 ,a n )<br />

⎝ . ⎠ ⎝ . ⎠ ⎜ a −−−−−−−−→ · · · −−−−−−−−−−→<br />

.<br />

4 ⎟<br />

⎜ ⎟<br />

⎝<br />

a . ⎠<br />

⎝ . ⎠<br />

n a n<br />

a n 0<br />

Transformation to upper triangular form (→ Def. 2.2.1) by successive unitary transformations:<br />

We may use either Householder reflections or successive Givens rotations as explained above.<br />

✬<br />

Lemma 2.8.3 (Uniqueness of QR-factorization).<br />

The “economical” QR-factorization (2.8.4) of A ∈ K m,n , m ≥ n, with rank(A) = n is unique,<br />

if we demand r ii > 0.<br />

✫<br />

Proof. we observe that R is regular, if A has full rank n. Since the regular upper triangular matrices<br />

form a group under multiplication:<br />

Q 1 R 1 = Q 2 R 2 ⇒ Q 1 = Q 2 R with upper triangular R := R 2 R −1<br />

1 .<br />

I = Q H 1 Q 1 = R H Q<br />

} H 2{{ Q } 2 R = R H R .<br />

=I<br />

The assertion follows by uniqueness of Cholesky decomposition, Lemma 2.7.6.<br />

✩<br />

✪<br />

✷<br />

⎛<br />

⎜<br />

⎝<br />

⎞ ⎛<br />

⎟<br />

⎠ ➤ ⎜<br />

⎝ 0 *<br />

⎞ ⎛<br />

⎟<br />

⎠ ➤ ⎜<br />

⎝ 0 *<br />

⎞ ⎛<br />

⎟<br />

⎠ ➤ ⎜<br />

⎝ 0 *<br />

⎞<br />

⎟<br />

⎠ .<br />

Ôº¾¼½ ¾º<br />

⎛<br />

⎞ ⎛ ⎞⎛<br />

m < n: ⎜ A<br />

⎟<br />

⎝<br />

⎠ = ⎜ Q<br />

⎟⎜<br />

⎝ ⎠⎝<br />

A = QR , Q ∈ K m,m , R ∈ K m,n ,<br />

where Q unitary, R upper triangular matrix.<br />

R<br />

⎞<br />

⎟<br />

⎠ ,<br />

Ôº¾¼¿ ¾º<br />

= “target column a” (determines unitary transformation),<br />

= modified in course of transformations.<br />

Remark 2.8.6 (Choice of unitary/orthogonal transformation).<br />

When to use which unitary/orthogonal transformation for QR-factorization ?<br />

QR-factorization<br />

(QR-decomposition)<br />

Generalization to A ∈ K m,n :<br />

⎛ ⎞<br />

m > n:<br />

⎜<br />

⎝<br />

A<br />

Q n−1 Q n−2 · · · · · Q 1 A = R ,<br />

of A ∈ C n,n : A = QR ,<br />

⎛<br />

=<br />

⎟ ⎜<br />

⎠ ⎝<br />

Q<br />

⎞<br />

⎛<br />

⎜<br />

⎝<br />

⎟<br />

⎠<br />

where Q H Q = I (orthonormal columns), R upper triangular matrix.<br />

Q := Q H 1 · · · · · QH n−1 unitary matrix ,<br />

R upper triangular matrix .<br />

R<br />

⎞<br />

⎟<br />

⎠ , A = QR , Q ∈ K m,n ,<br />

R ∈ K n,n ,<br />

(2.8.4)<br />

Ôº¾¼¾ ¾º<br />

Householder reflections advantageous for fully populated target columns (dense matrices).<br />

Givens rotations more efficient (← more selective), if target column sparsely populated.<br />

MATLAB functions:<br />

[Q,R] = qr(A) Q ∈ K m,m , R ∈ K m,n for A ∈ K m,n<br />

[Q,R] = qr(A,0) Q ∈ K m,n , R ∈ K n,n for A ∈ K m,n , m > n<br />

(economical QR-factorization)<br />

Ôº¾¼ ¾º<br />

[Q,R] = qr(A) ➙ Costs: O(m 2 n)<br />

[Q,R] = qr(A,0) ➙ Costs: O(mn 2 )<br />

Computational effort for Householder QR-factorization of A ∈ K m,n , m > n:<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!