21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

△<br />

Example 7.5.2 (Linear regression for stationary Markov chains).<br />

Sequence of scalar random variables: (Y k ) k∈Z = Markov chain<br />

Assume:<br />

stationary (time-independent) correlation<br />

Expectation E(Y i−j Y i−k ) = u k−j ∀i,j,k ∈ Z , u i = u −i .<br />

7.5 Toeplitz matrix techniques<br />

Example 7.5.1 (Parameter identification for linear time-invariant filters).<br />

Model:<br />

finite linear relationship<br />

∃x = (x 1 ,...,x n ) T ∈ R n : Y k =<br />

with unknown parameters x j , j = 1, . ..,n:<br />

n∑<br />

x j Y k−j ∀k ∈ Z .<br />

j=1<br />

for fixed i ∈ Z<br />

• (x k ) k∈Z m-periodic discrete signal = known input<br />

• (y k ) k∈Z m-periodic known output signal of a linear time-invariant filter, see Ex. 7.1.1.<br />

• Known: impulse response of filter has maximal duration n∆t, n ∈ N, n ≤ m<br />

Estimator<br />

∣<br />

n∑ ∣ ∣∣ 2<br />

x = argmin E∣Y i − x j Y i−j<br />

x∈R n j=1<br />

cf. (7.1.1)<br />

n−1<br />

∃h = (h 0 ,...,h n−1 ) T ∈ R n ∑<br />

, n ≤ m : y k = h j x k−j . (7.5.1)<br />

x k input signal<br />

y k output signal<br />

time<br />

time<br />

j=0<br />

Ôº½ º<br />

E|Y i | 2 − 2<br />

n∑<br />

x j u k +<br />

j=1<br />

n∑<br />

x k x j u k−j → min .<br />

k,j=1<br />

x T Ax − 2b T x → min with b = (u k ) n k=1 , A = (u i−j) n i,j=1 .<br />

Lemma 4.1.2 ⇒ x solves Ax = b (Yule-Walker-equation, see below)<br />

A ˆ= Covariance matrix:<br />

s.p.d. matrix with constant diagonals.<br />

Ôº½ º<br />

✸<br />

Parameter identification problem: seek h = (h 0 ,...,h n−1 ) T ∈ R n with<br />

⎛<br />

⎞<br />

x 0 x −1 · · · · · · x 1−n ⎛ ⎞<br />

x 1 x 0 x −1 .<br />

. x 1 x . ⎛ ⎞ y 0<br />

0<br />

..<br />

h ... . 0<br />

.<br />

.. .<br />

‖Ah − y‖ 2 =<br />

. . .. . .<br />

.. x −1<br />

x n−1 x 1 x ⎜ ⎟<br />

0<br />

⎝ . ⎠ − → min .<br />

⎜ x n x n−1 x ⎜ ⎟<br />

1 ⎟ h n−1 ⎝ . ⎠<br />

⎝<br />

.<br />

. ⎠ y m−1 ∥ x m−1 · · · · · · x ∥ m−n 2<br />

➣ Linear least squares problem, → Ch. 6 with Toeplitz matrix A: (A) ij = x i−j .<br />

System matrix of normal equations (→ Sect. 6.1)<br />

m∑<br />

M := A H A , (M) ij = x k−i x k−j = z i−j due to periodicity of (x k ) k∈Z .<br />

k=1<br />

➣<br />

M ∈ R n,n is a matrix with constant diagonals & s.p.d.<br />

(“constant diagonals” ⇔ (M) i,j depends only on i − j)<br />

Ôº½ º<br />

✸<br />

Matrices with constant diagonals occur frequently in mathematical models. They generalize of circulant<br />

matrices → Def. 7.1.3.<br />

Note: “Information content” of a matrix M ∈ K m,n with constant diagonals, that is, (M) i,j = m i−j ,<br />

is m + n − 1 numbers ∈ K.<br />

Definition 7.5.1 (Toeplitz matrix).<br />

T = (t ij ) n i,j=1 ∈ Km,n is a Toeplitz matrix, if there is a<br />

vector u = (u −m+1 ,...,u n−1 ) ∈ K m+n−1 such that<br />

t ij = u j−i , 1 ≤ i ≤ m, 1 ≤ j ≤ n.<br />

7.5.1 Toeplitz matrix arithmetic<br />

⎛<br />

⎞<br />

u 0 u 1 · · · · · · u n−1<br />

u −1 u 0 u 1 .<br />

T =<br />

. . .. ... . .. .<br />

⎜ . ... . .. ... .<br />

⎝ . .<br />

⎟<br />

.. ... u 1 ⎠<br />

u 1−m · · · · · · u −1 u 0<br />

T = (u j−i ) ∈ K m,n = Toeplitz matrix with generating vector u = (u −m+1 ,...,u n−1 ) ∈ C m+n−1<br />

Ôº¾¼ º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!