21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

➤ Linear system of equations with tridiagonal s.p.d. (→ Def. 2.7.1, Lemma 2.7.4) coefficient<br />

matrix → c 0 , ...,c n<br />

Thm. 2.6.6 ⇒ computational effort for the solution = O(n)<br />

Example 9.4.3 (Locality of the natural cubic spline interpolation).<br />

Given a grid M := {t 0 < t 1 < · · · < t n } the ith natural cardinal spline is defined as<br />

L i ∈ S 3,M , L i (t j ) = δ ij , L ′′<br />

i (t 0) = L ′′<br />

i (t n) = 0 .<br />

➂ Periodic cubic spline interpolation: s ′ (t 0 ) = s ′ (t n ), s ′′ (t 0 ) = s ′′ (t n )<br />

n × n-linear system with s.p.d. coefficient matrix<br />

⎛<br />

⎞<br />

a 1 b 1 0 · · · 0 b 0<br />

b 1 a 2 b 2 0<br />

A :=<br />

0 . . . ... . .. .<br />

⎜ . ... . .. ... 0<br />

,<br />

⎝ 0 .<br />

⎟<br />

.. a n−1 b n−1 ⎠<br />

b 0 0 · · · 0 b n−1 a 0<br />

b i := 1<br />

h i+1<br />

, i = 0, 1, ...,n − 1 ,<br />

a i := 2 h i<br />

+ 2<br />

h i+1<br />

, i = 0, 1, . ..,n − 1 .<br />

Solved with rank-1-modifications technique (see Section 2.9.0.1, Lemma 2.9.1) + tridiagonal elimination,<br />

computational effort O(n)<br />

MATLAB-function: v = spline(t,y,x): natural / complete spline interpolation<br />

(see spline-toolbox in MATLAB)<br />

Ôº¾ º<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

n∑<br />

Natural spline interpolant: s(t) = y j L j (t) .<br />

j=0<br />

Decay of L i ↔ locality of the cubic spline interpolation.<br />

Cardinal cubic spline function<br />

Cardinal cubic spline in middle points of the intervals<br />

10 0<br />

10 −1<br />

Value of the cardinal cubic splines<br />

10 −2<br />

10 −3<br />

10 −4<br />

Ôº¿½ º<br />

−5<br />

Notice analogies and differences:<br />

extra degrees of freedom fixed by:<br />

1. piecewise polynomial<br />

1. intermediate nodes,<br />

interpolant, d = 3,<br />

piecewise cubic polynomials<br />

that match the data 2. slopes,<br />

2. Hermite interpolant,<br />

(t i , y i )<br />

3. C 2 -constraint,<br />

3. cubic spline,<br />

complete/natural/periodic<br />

constraint.<br />

Exponential decay of the cardinal splines ➞ cubic spline interpolation is “almost local”<br />

✸<br />

Example 9.4.4 (Approximation by complete cubic spline interpolants).<br />

Grid M := {−1 + n 2j}n j=0 , n ∈ N ➙ meshwidth h = 2/n, I = [−1, 1]<br />

⎧<br />

1<br />

⎪⎨ 0 , if t < −<br />

f 1 (t) =<br />

1 + e −2t ∈ 5 2 ,<br />

C∞ (I) , f 2 (t) = 1<br />

2 ⎪⎩<br />

(1 + cos(π(t − 3 5 ))) , if − 2 5 < t < 5 3 , ∈ C 1 (I) .<br />

1 otherwise.<br />

Remark 9.4.2 (Shape preservation).<br />

Data s(t j ) = y j from Ex. 9.1.1 and<br />

c 0 := y 1 − y 0<br />

t 1 − t 0<br />

,<br />

c n := y n − y n−1<br />

t n − t n−1<br />

.<br />

The cubic spline interpolant is not monotonicityor<br />

curvature-preserving<br />

(cubic spline interpolation is linear!)<br />

△<br />

s(t)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Data points<br />

Cubic spline interpolant<br />

−0.2<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

t<br />

Ôº¿¼ º<br />

||s−f||<br />

L ∞ −Norm<br />

L 2 −Norm<br />

10 −4<br />

10 −6<br />

10 −8<br />

10 −10<br />

10 −12<br />

10 −2 10 −1 10 0<br />

10 −2 Meshwidth h<br />

‖f 1 − s‖ L ∞ ([−1,1]) = O(h4 )<br />

||s−f||<br />

L ∞ −Norm<br />

10 −1 L 2 −Norm<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

10 −6<br />

10 −7<br />

10 −2 10 −1 10 0<br />

10 0 Meshwidth h<br />

‖f 2 − s‖ L ∞ ([−1,1]) = O(h2 )<br />

Ôº¿¾ º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!