21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

0 500 1000 1500 2000 2500 3000<br />

x low frequency power spectrum<br />

104<br />

14<br />

12<br />

0.6<br />

0.4<br />

m−1 ∑<br />

h m−k = y 2j + iy 2j+1 ωm<br />

j(m−k)<br />

j=0<br />

= ∑ m−1<br />

j=0 y 2j ω jk<br />

m − i ·<br />

∑ m−1<br />

j=0 y 2j+1 ω jk<br />

m . (7.2.10)<br />

|c k<br />

| 2<br />

10<br />

8<br />

6<br />

sound pressure<br />

0.2<br />

0<br />

−0.2<br />

⇒<br />

∑ m−1<br />

j=0 y 2j ω jk<br />

m = 1 2 (h k + h m−k ) ,<br />

Use simple identities for roots of unity:<br />

∑ m−1<br />

j=0 y 2j+1 ω jk<br />

m = − 1 2 i(h k − h m−k ) .<br />

4<br />

2<br />

0<br />

index k of Fourier coefficient<br />

−0.4<br />

−0.6<br />

Sampled signal<br />

cutt−off = 1000<br />

cutt−off = 3000<br />

cutt−off = 5000<br />

−0.8<br />

0.68 0.69 0.7 0.71 0.72 0.73 0.74<br />

time[s]<br />

The power spectrum of a signal y ∈ C n is the vector ( |c j | 2) n−1<br />

j=0 , where c = F ny is the discrete<br />

Fourier transform of y.<br />

⇒<br />

n−1 ∑<br />

c k = y j ωn jk = ∑ m−1<br />

j=0 y 2j ωm jk + ωn k ·<br />

j=0<br />

∑ m−1<br />

j=0 y 2j+1 ω jk<br />

m . (7.2.11)<br />

{ ck = 1 2 (h k + h m−k ) − 1 2 iωk n(h k − h m−k ) , k = 0,...,m − 1 ,<br />

c m = Re{h 0 } − Im{h 0 } ,<br />

c k = c n−k , k = m + 1,...,n − 1 .<br />

(7.2.12)<br />

✸<br />

Ôº½ º¾<br />

Ôº¿ º¾<br />

7.2.3 Real DFT<br />

Signal obtained from sampling a time-dependent voltage:<br />

a real vector.<br />

Aim: efficient DFT (Def. 7.2.3) (c 0 , . ..,c n−1 ) for real coefficients (y 0 ,...,y n−1 ) T ∈ R n , n = 2m,<br />

m ∈ N.<br />

If y j ∈ R in DFT formula (7.2.8), we obtain redundant output<br />

n−1 ∑<br />

⇒ c k =<br />

j=0<br />

ω (n−k)j<br />

n<br />

y j ω kj<br />

n =<br />

= ω kj<br />

n , k = 0, ...,n − 1 ,<br />

n−1 ∑<br />

y j ω n (n−k)j = c n−k , k = 1,...,n − 1 .<br />

j=0<br />

MATLAB-Implementation<br />

(by a DFT of length n/2 ):<br />

(Note:<br />

not really optimal<br />

MATLAB implementation)<br />

7.2.4 Two-dimensional DFT<br />

Code 7.2.16: DFT of real vectors<br />

1 function c = f f t r e a l ( y )<br />

2 n = length ( y ) ; m = n / 2 ;<br />

3 i f (mod( n , 2 ) ~= 0) , error ( ’ n must be even ’ ) ; end<br />

4 y = y ( 1 : 2 : n ) + i ∗y ( 2 : 2 : n ) ; h = f f t ( y ) ; h = [ h ; h ( 1 ) ] ;<br />

5 c = 0.5∗( h+conj ( h (m+1: −1:1) ) ) − . . .<br />

6 (0.5∗ i ∗exp(−2∗pi∗ i / n ) . ^ ( ( 0 :m) ’ ) ) . ∗ . . .<br />

7 ( h−conj ( h (m+1: −1:1) ) ) ;<br />

8 c = [ c ; conj ( c (m: −1:2) ) ] ;<br />

Idea: map y ∈ R n , to C m and use DFT of length m.<br />

A natural analogy:<br />

one-dimensional data (“signal”) ←→ vector y ∈ C n ,<br />

m−1 ∑<br />

h k = (y 2j + iy 2j+1 ) ωm jk = ∑ m−1<br />

j=0 y 2j ωm jk + i ·<br />

j=0<br />

∑ m−1<br />

Ôº¾ º¾<br />

j=0 y 2j+1 ωm jk , (7.2.9)<br />

two-dimensional data (“image”) ←→ matrix. Y ∈ C m,n<br />

Ôº º¾

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!