21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0 2 4 6 8 10 12 14 16 18 20<br />

singular value<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

No. of singular value<br />

← distribution of singular values of matrix<br />

two dominant singular values !<br />

measurements display linear correlation with two<br />

principal components<br />

= min<br />

‖y‖ 2 =1 ‖Σy‖2 2 = min ‖y‖ 2 =1 (σ2 1 y2 1 + · · · + σ2 ny 2 n) ≥ σ 2 n .<br />

The minimum σ 2 n is attained for y = e n ⇒ minimizer x = Ve n = (V) :,n .<br />

By similar arguments:<br />

σ 1 = max<br />

‖x‖ 2 =1 ‖Ax‖ 2<br />

, (V) :,1 = argmax ‖Ax‖ 2 . (5.5.6)<br />

‖x‖ 2 =1<br />

Recall: 2-norm of the matrix A (→ Def. 2.5.2) is defined as the maximum in (5.5.6). Thus we have<br />

proved the following theorem:<br />

✬<br />

✩<br />

principal components = u·,1 , u·,2 (leftmost columns of U-matrix of SVD)<br />

their relative weights = v·,1 , v·,2 (leftmost columns of V-matrix of SVD)<br />

Lemma 5.5.5 (SVD and Euclidean matrix norm).<br />

• ∀A ∈ K m,n : ‖A‖ 2 = σ 1 (A) ,<br />

• ∀A ∈ K n,n regular: cond 2 (A) = σ 1 /σ n .<br />

Ôº¿ º<br />

✫<br />

Remark:<br />

MATLAB functions norm(A) and cond(A) rely on svd(A)<br />

✪<br />

Ôº º<br />

0.25<br />

0.4<br />

1st principal component<br />

2nd principal component<br />

• Application of SVD:<br />

best low rank approximation<br />

0.2<br />

0.35<br />

principal component<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

−0.05<br />

−0.1<br />

−0.15<br />

1st model vector<br />

2nd model vector<br />

1st principal component<br />

2nd principal component<br />

−0.2<br />

20 25 30<br />

No. of measurement<br />

45 50<br />

Fig. 86<br />

0 5 10 15 35 40<br />

contribution of principal component<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

measurement<br />

Fig. 87 ✸<br />

Definition 5.5.6 (Frobenius norm).<br />

The Frobenius norm of A ∈ K m,n is defined as<br />

Obvious:<br />

‖A‖ 2 F := m ∑<br />

i=1 j=1<br />

n∑<br />

|a ij | 2 .<br />

‖A‖ F invariant under unitary transformations of A<br />

Frobenius norm and SVD:<br />

‖A‖ 2 F = ∑ p<br />

j=1 σ2 j (5.5.7)<br />

• Application of SVD:<br />

extrema of quadratic forms on the unit sphere<br />

A minimization problem on the Euclidean unit sphere {x ∈ K n : ‖x‖ 2 = 1}:<br />

✎ notation:<br />

R k (m, n) := {A ∈ K m,n : rank(A) ≤ k}, m, n,k ∈ N<br />

given A ∈ K m,n , m > n, find x ∈ K n , ‖x‖ 2 = 1 , ‖Ax‖ 2 → min . (5.5.5)<br />

Use that multiplication with unitary matrices preserves the 2-norm (→ Thm. 2.8.2) and the singular<br />

value decomposition A = UΣV H (→ Def. 5.5.2):<br />

min<br />

‖x‖ 2 =1 ‖Ax‖2 2 = min ∥<br />

∥UΣV H x∥ 2 = min ∥<br />

∥UΣ(V H x) ∥ 2<br />

‖x‖ 2 =1<br />

2 ‖V H x‖ 2 =1<br />

2<br />

Ôº º<br />

Ôº º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!