21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

created by taking points on the graph of<br />

⎧<br />

⎪⎨ 0 if t < −5 2 ,<br />

f(t) = 1<br />

2 ⎪⎩<br />

(1 + cos(π(t − 5 3))) if − 5 2 < t < 3 5 ,<br />

1 otherwise.<br />

Piecewise linear interpolant of data in<br />

Fig. 104:<br />

y<br />

1.2<br />

1<br />

Polynomial<br />

Measure pts.<br />

Natural f<br />

← Interpolating polynomial, degree = 10<br />

y<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

t<br />

Oscillations at the endpoints of the interval (see<br />

Ex. 8.4.3)<br />

• No locality<br />

• No positivity<br />

• No monotonicity<br />

9.2 Piecewise Lagrange interpolation<br />

Idea:<br />

• No local conservation of the curvature<br />

use piecewise polynomials with respect to a partition (mesh) M := {a = x 0 < x 1 <<br />

. .. < x m = b} of the interval I := [a,b], a < b.<br />

✸<br />

Ôº¿ º¾<br />

Piecewise linear interpolation means simply “connect the data points in R 2 using straight lines”.<br />

✬<br />

Theorem 9.2.1 (Local shape preservation by piecewise linear interpolation).<br />

Let s ∈ C([t 0 , t n ]) be the piecewise linear interpolant of (t i ,y i ) ∈ R 2 , i = 0, ...,n, for every<br />

subinterval I = [t j ,t k ] ⊂ [t 0 ,t n ]:<br />

if (t i , y i )| I are positive/negative<br />

⇒ s| I is positive/negative,<br />

if (t i , y i )| I are monotonic (increasing/decreasing) ⇒ s| I is monotonic (increasing/decreasing),<br />

if (t i , y i )| I are convex/concave<br />

⇒ s| I is convex/concave.<br />

t<br />

✩<br />

Ôº º¾<br />

✫<br />

✪<br />

9.2.1 Piecewise linear interpolation<br />

Local shape preservation = perfect shape preservation!<br />

None of this properties carries over to higher polynomial degrees d > 1.<br />

Data: (t i ,y i ) ∈ R 2 , i = 0,...,n, n ∈ N, t 0 < t 1 < · · · < t n .<br />

Piecewise linear interpolant:<br />

Drawback:<br />

f is only C 0 but not C 1 (no continuous derivative).<br />

s(x) = (t i+1 − t)y i + (t − t i )y i+1<br />

t i+1 − t i<br />

t ∈ [t i ,t i+1 ].<br />

Ôº º¾<br />

Obvious:<br />

linear interpolation is linear (as mapping y ↦→ s) and local:<br />

y j = δ ij , i, j = 0,...,n ⇒ supp(s) ⊂ [t i−1 ,t i+1 ] .<br />

Ôº º¾

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!