21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

47 xlabel ( ’ { \ b f no . o f . quadrature nodes } ’ , ’ f o n t s i z e ’ ,14) ;<br />

48 ylabel ( ’ { \ b f | quadrature e r r o r | } ’ , ’ f o n t s i z e ’ ,14) ;<br />

49 t i t l e ( ’ { \ b f Trapezoidal r u l e quadrature f o r<br />

1 . / s q r t (1−a∗ s i n (2∗ p i ∗x +1) ) } ’ , ’ f o n t s i z e ’ ,12) ;<br />

50<br />

51 p r i n t −depsc2 ’ . . / PICTURES/ t r a p e r r 1 . eps ’ ;<br />

⎛<br />

⎝ p ⎞ ⎛<br />

0(ξ 1 ) ... p 0 (ξ n )<br />

.<br />

. ⎠ ⎝ ω ⎞ ⎛ ∫ ⎞ ba<br />

1 p<br />

. ⎠ ⎜ 0 (t) dt<br />

⎟<br />

= ⎝ .<br />

∫<br />

⎠ . (10.3.7)<br />

p n−1 (ξ n ) ... p n−1 (ξ n ) ω n ba<br />

p n−1 (t) dt<br />

For instance, for the computation of quadrature weights, one may choose the monomial basis p j (t) =<br />

t j .<br />

Explanation:<br />

{<br />

∫ 1 0 , if k ≠ 0 ,<br />

⎧⎪ ⎨ 0 f(t) dt =<br />

f(t) = e 2πikt 1 , if k = 0 .<br />

⎪ ⎩<br />

T m (f) = m<br />

1 m−1 ∑<br />

l=0<br />

e 2πi<br />

m lk (7.2.2)<br />

=<br />

{<br />

0 , if k ∉ mZ ,<br />

1 , if k ∈ mZ .<br />

Natural question: What is the maximal order for an n-point quadrature formula ?<br />

△<br />

Equidistant trapezoidal rule T m is exact for trigonometric polynomials of<br />

degree < 2m !<br />

It takes sophisticated tools from complex analysis to conclude exponential convergence for analytic<br />

integrands from the above observation.<br />

Ôº ½¼º¿<br />

✬<br />

Lemma 10.3.2 (Bound for order of quadrature formula).<br />

There is no n-point quadrature formula of order 2n + 1<br />

✫<br />

✩<br />

Ôº½ ½¼º¿<br />

✪<br />

Remark 10.3.11 (Choice of (local) quadrature weights).<br />

Beyond local Newton-Cotes formulas from Ex. 10.2.2:<br />

Given: arbitrary nodes ξ 1 ,...,ξ n for n-point (local) quadrature formula on [a,b]<br />

✸<br />

Proof. (indirect) Assume there was an n-point quadrature formula with nodes a ≤ ξ 1 < ξ 2 < ... <<br />

ξ n ≤ b of order 2n + 1.<br />

➤<br />

Construct polynomial p(t) := ∏ n<br />

j=1 (t − ξ j) 2 ∈ P 2n<br />

Q n (p) = 0 but<br />

Thus, the assumption leads to a contradiction.<br />

∫ b<br />

p(t) dt > 0 .<br />

a<br />

✷<br />

Take cue from polynomial quadrature formulas: choice of weights ω j according to (10.2.2) ensures<br />

order ≥ n.<br />

There is a more direct way without detour via Lagrange polynomials:<br />

10.4 Gauss Quadrature<br />

If p 0 ,...,p n−1 is a basis of P n , then, thanks to the linearity of the integral and quadrature formulas,<br />

∫ b<br />

Q n (p j )= p j (t) dt ∀j = 0,...,n − 1 ⇔ Q n has order ≥ n . (10.3.6)<br />

a<br />

Ôº¼ ½¼º¿<br />

➣ n × n linear system of equations, see (10.4.1) for an example:<br />

Natural question: Are there n-point quadrature formulas of maximal order 2n ?<br />

Ôº¾ ½¼º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!