21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

For circuit of Fig. 55 at angular frequency ω > 0:<br />

⎛<br />

iωC 1 + R 1 − 1 ωL i + R 1 − 1 i<br />

2 R 1 ωL − 1 ⎞<br />

R 2<br />

−<br />

A =<br />

1 1 R 1 R1<br />

+ iωC 2 0 −iωC 2<br />

⎜ i<br />

⎝ ωL 0 1<br />

R5<br />

− ωL i + R 1 − 1 ⎟<br />

4 R 4 ⎠<br />

−R 1 −iωC 2 2 −R 1 1<br />

4 R2<br />

+ iωC 2 + R 1 ⎛<br />

4<br />

1<br />

R + 1 R 1 − 2 R 1 0 − 1 ⎞<br />

⎛<br />

⎞ ⎛<br />

1 R 1<br />

2<br />

−<br />

=<br />

R 1 1 C 1 0 0 0 L<br />

1 R1<br />

0 0<br />

⎜<br />

⎝ 0 0 1<br />

R5<br />

+ R 1 − 1 ⎟<br />

4 R 4 ⎠ + iω ⎜ 0 C 2 0 −C 2<br />

⎟<br />

⎝ 0 0 0 0 ⎠ − 0 − L 1 0<br />

⎞<br />

i/ω ⎜ 0 0 0 0<br />

⎝− −R 1 0 − 1 1<br />

2 R 4 R2<br />

+ R 1 L 1 0 ⎟<br />

1<br />

L 0⎠<br />

0 −C 2 0 C 2 0 0 0 0<br />

4<br />

✗<br />

✖<br />

A(ω) := W + iωC − iω −1 S , W,C,S ∈ R n,n symmetric . (5.0.1)<br />

resonant frequencies = ω ∈ {ω ∈ R: A(ω) singular}<br />

If the circuit is operated at a real resonant frequency, the circuit equations will not possess a solution.<br />

Of course, the real circuit will always behave in a well-defined way, but the linear model will break<br />

down due to extremely large currents and voltages.<br />

In an experiment this breakdown manifests<br />

itself as a rather explosive meltdown of circuits components. Hence, it is vital to determine resonant<br />

frequencies of circuits in order to avoid their destruction.<br />

✔<br />

✕<br />

Ôº¿¿ º¼<br />

Autonomous homogeneous linear ordinary differential equation (ODE):<br />

➣<br />

⎛<br />

A = S⎝ λ ⎞<br />

1 . .. ⎠S −1 , S ∈ C n,n regular =⇒<br />

λ n<br />

} {{ }<br />

=:D<br />

solution of initial value problem:<br />

ẏ = Ay , A ∈ C n,n . (5.0.4)<br />

(<br />

ẏ = Ay z=S−1 y<br />

←→<br />

)<br />

ż = Dz .<br />

ẏ = Ay , y(0) = y 0 ∈ C n ⇒ y(t) = Sz(t) , ż = Dz , z(0) = S −1 y 0 .<br />

The initial value problem for the decoupled homogeneous linear ODE ż = Dz has a simple analytic<br />

solution<br />

In light of Rem. 1.2.1:<br />

⎛<br />

A = S⎝ λ 1 . . .<br />

( )<br />

z i (t) = exp(λ i t)(z 0 ) i = exp(λ i t) (S −1 ) T i,: y 0 .<br />

⎞<br />

⎠S −1 ⇔ A ( ) ( )<br />

(S) :,i = λi (S):,i<br />

λ n<br />

Ôº¿ º¼<br />

i = 1, ...,n . (5.0.5)<br />

➥<br />

relevance of numerical methods for solving:<br />

Find ω ∈ C \ {0}: W + iωC − iω −1 S singular .<br />

This is a quadratic eigenvalue problem: find x ≠ 0, ω ∈ C \ {0},<br />

Substitution: y = −iω −1 x [41, Sect. 3.4]:<br />

( )( W S x<br />

(5.0.2) ⇔<br />

I 0 y)<br />

} {{ }}{{}<br />

:=M :=z<br />

➣<br />

A(ω)x = (W + iωC − iω −1 S)x = 0 . (5.0.2)<br />

(<br />

−iC 0<br />

= ω<br />

0 −iI<br />

} {{ }<br />

:=B<br />

)( x<br />

y)<br />

generalized linear eigenvalue problem of the form: find ω ∈ C, z ∈ C 2n \ {0} such that<br />

Mz = ωBz . (5.0.3)<br />

In this example one is mainly interested in the eigenvalues ω, whereas the eigenvectors z usually<br />

need not be computed.<br />

In order to find the transformation matrix S all non-zero solution vectors (= eigenvectors) x ∈ C n of<br />

the linear eigenvalue problem<br />

Ax = λx<br />

have to be found.<br />

✸<br />

5.1 Theory of eigenvalue problems<br />

Example 5.0.2 (Analytic solution of homogeneous linear ordinary differential equations). → [40,<br />

Remark 5.6.1]<br />

✸<br />

Ôº¿ º¼<br />

Ôº¿ º½

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!