21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

7.4.1 Sine transform<br />

Another trigonometric basis transform in R n−1 , n ∈ N:<br />

Standard basis of R n−1 ⎧<br />

⎧⎛<br />

⎞⎛<br />

⎞ ⎛ ⎞⎛<br />

⎞⎫<br />

⎛<br />

1 0<br />

⎪⎨<br />

1<br />

0.<br />

0.<br />

· · ·<br />

0..<br />

⎪⎬ ⎪⎨<br />

⎜ ⎟⎜<br />

⎟ ⎜0<br />

⎟⎜.<br />

←−<br />

⎟ ⎜<br />

⎝.<br />

⎠⎝<br />

0.. ⎠ ⎝1⎠⎝0⎠<br />

⎝<br />

⎪⎩<br />

0 0 0 1<br />

⎪⎭ ⎪⎩<br />

sin( π n )<br />

sin( 2π n )<br />

.<br />

.<br />

sin( (n−1)π<br />

n )<br />

Basis transform matrix (sine basis → standard basis):<br />

“Sine basis”<br />

⎞⎛<br />

sin( 2π ⎞ ⎛ ⎞⎫<br />

n )<br />

sin( 4π n )<br />

sin( (n−1)π<br />

n<br />

.<br />

· · ·<br />

sin( 2(n−1)π<br />

n )<br />

⎪⎬<br />

⎟<br />

⎠⎜<br />

⎝ .<br />

⎟<br />

.<br />

⎠ ⎜<br />

sin( 2(n−1)π ⎝ . ⎟<br />

⎠<br />

n ) sin( (n−1)2 π ⎪⎭<br />

n<br />

S n := (sin(jkπ/n)) n−1<br />

j,k=1 ∈ Rn−1,n−1 .<br />

2n−1<br />

(7.2.8)<br />

∑<br />

(F 2n ỹ) k = ỹ j e −2π 2n kj<br />

j=1<br />

n−1 ∑<br />

= y j e −π n kj −<br />

2n−1 ∑<br />

j=1 j=n+1<br />

n−1 ∑<br />

= y j (e −π n kj − en πkj )<br />

y 2n−j e −π n kj<br />

j=1<br />

= −2i (S n y) k ,k = 1,...,n − 1 .<br />

Remark 7.4.1 (Sine transform via DFT of half length).<br />

Step ➀:<br />

transform of the coefficients<br />

Wrap-around implementation<br />

function c = sinetrans(y)<br />

n = length(y)+1;<br />

yt = [0,y,0,-y(end:-1:1)];<br />

ct = fft(yt);<br />

c = -ct(2:n)/(2*i);<br />

MATLAB-CODE sine transform<br />

ỹ j = sin(jπ/n)(y j + y n−j ) + 1 2 (y j − y n−j ) , j = 1, . ..,n − 1 , ỹ 0 = 0 .<br />

✬<br />

Lemma 7.4.1 (Properties of the sine matrix).<br />

√ 2 /nS n is real, symmetric and orthogonal (→ Def. 2.8.1)<br />

✫<br />

✩<br />

Ôº¼ º<br />

✪<br />

Ôº¼ º<br />

Sine transform:<br />

s k = n−1 ∑<br />

y j sin(πjk/n) , k = 1,...,n − 1 . (7.4.1)<br />

j=1<br />

DFT-based algorithm for the sine transform (ˆ= S n ×vector):<br />

⎧<br />

⎪⎨ y j , if j = 1, ...,n − 1 ,<br />

“wrap around”: ỹ ∈ R 2n : ỹ j = 0 , if j = 0, n , (ỹ “odd”)<br />

⎪⎩<br />

−y 2n−j , if j = n + 1, ...,2n − 1 .<br />

y j<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

j<br />

−→<br />

tyj<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

−1<br />

0 5 10 15 20 25 30<br />

j<br />

Ôº¼ º<br />

n−1<br />

Step ➁: real DFT (→ Sect. 7.2.3) of (ỹ 0 ,...,ỹ n−1 ) ∈ R n ∑<br />

: c k := ỹ j e −2πi n jk<br />

n−1 ∑<br />

n−1<br />

Hence Re{c k } = ỹ j cos(− 2πi<br />

n jk) = ∑<br />

(y j + y n−j ) sin( πj<br />

n ) cos(2πi n jk)<br />

j=0<br />

j=1<br />

n−1 ∑<br />

= 2y j sin( πj<br />

n−1<br />

n ) cos(2πi n jk) = ∑<br />

(<br />

y j sin( 2k + 1<br />

)<br />

− 1<br />

πj) − sin(2k<br />

n n πj) j=0<br />

j=0<br />

= s 2k+1 − s 2k−1 .<br />

n−1 ∑<br />

n−1<br />

Im{c k } = ỹ j sin(− 2πi<br />

n jk) = − ∑<br />

n−1<br />

1<br />

2 (y j − y n−j ) sin( 2πi<br />

n jk) = − ∑<br />

j=0<br />

j=1<br />

j=1<br />

= −s 2k .<br />

Step ➂: extraction of s k<br />

j=0<br />

y j sin( 2πi<br />

n jk)<br />

n−1<br />

s 2k+1 , k = 0, ..., n 2 − 1 ➤ from recursion s ∑<br />

2k+1 − s 2k−1 = Re{c k } , s 1 = y j sin(πj/n) ,<br />

s 2k , k = 1, ..., n 2 − 2 ➤ s 2k = − Im{c k } .<br />

MATLAB-Implementation (via a fft of length n/2):<br />

j=1<br />

Ôº¼ º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!