21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

If we used the residual based termination criterion<br />

∥<br />

∥F(x (k) ) ∥ ≤ τ ,<br />

1.5<br />

1<br />

Divergenz des Newtonverfahrens, f(x) = arctan x<br />

5<br />

4.5<br />

4<br />

3.5<br />

then the resulting algorithm would not be affine invariant, because for F(x) = 0 and AF(x) = 0,<br />

A ∈ R n,n regular, the Newton iteration might terminate with different iterates.<br />

0.5<br />

a<br />

3<br />

2.5<br />

0<br />

x (k−1)<br />

x (k)<br />

2<br />

1.5<br />

Terminology:<br />

∆¯x (k) := DF(x (k−1) ) −1 F(x (k) ) ˆ= simplified Newton correction<br />

Reuse of LU-factorization (→ Rem. 2.2.6) of DF(x (k−1) ) ➤<br />

∆¯x (k) available<br />

with O(n 2 ) operations<br />

−0.5<br />

−1<br />

−1.5<br />

−6 −4 −2 0 2 4 6<br />

1<br />

0.5<br />

0<br />

x (k+1) −15 −10 −5 0 5 10 15<br />

red zone = {x (0) ∈ R, x (k) → 0}<br />

x<br />

Summary: The Newton Method<br />

converges asymptotically very fast: doubling of number of significant digits in each step<br />

often a very small region of convergence, which requires an initial guess<br />

rather close to the solution.<br />

Idea:<br />

we observe “overshooting” of Newton correction<br />

damping of Newton correction:<br />

With λ (k) > 0: x (k+1) := x (k) − λ (k) DF(x (k) ) −1 F(x (k) ) . (3.4.5)<br />

Ôº¿½ ¿º<br />

Terminology:<br />

λ (k) = damping factor<br />

Ôº¿½ ¿º<br />

3.4.4 Damped Newton method<br />

Example 3.4.11 (Local convergence of Newton’s<br />

method).<br />

F(x) = xe x − 1 ⇒ F ′ (−1) = 0<br />

2<br />

1.5<br />

1<br />

0.5<br />

x ↦→ xe x − 1<br />

Choice of damping factor: affine invariant natural monotonicity test [11, Ch. 3]<br />

where<br />

“maximal” λ (k) ∥<br />

> 0: ∥∆x(λ (k) ) ∥ ≤ (1 − λ(k) ∥ ∥ ∥∥∆x<br />

2 ) (k) ∥2 (3.4.6)<br />

∆x (k) := DF(x (k) ) −1 F(x (k) ) → current Newton correction ,<br />

∆x(λ (k) ) := DF(x (k) ) −1 F(x (k) + λ (k) ∆x (k) ) → tentative simplified Newton correction .<br />

Heuristics: convergence ⇔ size of Newton correction decreases<br />

x (0) < −1 ⇒ x (k) → −∞<br />

x (0) > −1 ⇒ x (k) → x ∗<br />

0<br />

−0.5<br />

✸<br />

−1<br />

Fig. 39<br />

−1.5<br />

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1<br />

Example 3.4.12 (Region of convergence of Newton<br />

method).<br />

2<br />

1.5<br />

1<br />

F(x) = arctan(ax) , a > 0,x ∈ R<br />

with zero x ∗ = 0 .<br />

✸<br />

arctan(ax)<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

a=10<br />

a=1<br />

a=0.3<br />

Fig. 40<br />

−2<br />

−15 −10 −5 0 5 10 15<br />

x<br />

Ôº¿½ ¿º<br />

Ôº¿¾¼ ¿º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!