21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.2<br />

equality in (8.2.10) for y := (sgn(L j (t ∗ ))) n j=0 , t∗ := argmax t∈I<br />

∑ ni=0<br />

|L i (t)|.<br />

✷<br />

Example 8.2.3. (Generalized Lagrange polynomials<br />

for Hermite Interpolation)<br />

double nodes<br />

t 0 = 0, t 1 = 0, t 2 = 1, t 3 = 1 ⇒ n = 3<br />

(cubic Hermite interpolation).<br />

Explicit formulas for the polynomials → see<br />

(9.3.2).<br />

✸<br />

Cubic Hermite Polynomials<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

t<br />

p 0<br />

p 1<br />

p 2<br />

p 3<br />

Fig. 99<br />

Proof. (for the L 2 -Norm)<br />

By △-inequality and Cauchy-Schwarz inequality<br />

‖I T (y)‖ L 2 (I) ≤ ∑ n<br />

j=0 |y j| ∥ ( )1<br />

∥ ∑n<br />

( )1<br />

∥L ∥L j 2 (I) ≤ j=0 |y j| 2 2 ∑n ∥ ∥<br />

∥L<br />

j=0 j 2 2<br />

L 2 (I) . ✷<br />

Terminology: Lebesgue constant of T : λ T := ∥ ∑ n<br />

i=0 |L i| ∥ L ∞ (I)<br />

Example 8.2.4 (Computation of the Lebesgue constant).<br />

I = [−1, 1], T = {−1 + 2k n }n k=0<br />

(uniformly spaced nodes)<br />

8.2.2 Conditioning of polynomial interpolation<br />

Ôº½ º¾<br />

supremum norm ‖f‖ L ∞ (I) := sup{|f(t)|: t ∈ I} , (8.2.7)<br />

Necessary for studying the conditioning: norms on vector space of continuous functions C(I), I ⊂ R<br />

Asymptotic estimate (with (8.2.3) and Stirling formula):<br />

for n = 2m<br />

|L m (1 − n 1 1 )| = n · 1n · 3n · · · · n−3<br />

n · n+1<br />

n · · · · 2n−1<br />

n (2n)!<br />

( ) 2<br />

=<br />

2n · 4n · · · · · n−2<br />

n · 1 (n − 1)2 2n ((n/2)!) 2 n! ∼ 2n+3/2<br />

π (n − 1) n<br />

Ôº¿ º¾<br />

L 2 -norm<br />

L 1 -norm<br />

∫<br />

‖f‖ 2 L 2 (I) := |f(t)| 2 dt , (8.2.8)<br />

∫I<br />

‖f‖ L 1 (I) := |f(t)| dt . (8.2.9)<br />

I<br />

Theory [6]: for uniformly spaced nodes λ T ≥ Ce n/2 for C > 0 independent of n.<br />

Example 8.2.5 (Oscillating interpolation polynomial: Runge’s counterexample).<br />

✸<br />

✬<br />

Lemma 8.2.5 (Absolute conditioning of polynomial interpolation).<br />

Given a mesh T ⊂ R with generalized Lagrange polynomials L i , i = 0,...,n, and fixed<br />

I ⊂ R, the norm of the interpolation operator satisfies<br />

‖I T (y)‖ L<br />

‖I T ‖ ∞→∞ := sup<br />

∞ (I)<br />

= ∥ ∑ n<br />

y∈K n+1 \{0} ‖y‖ ∞<br />

i=0 |L i| ∥ , L ∞ (I) (8.2.10)<br />

‖I T (y)‖ L<br />

‖I T ‖ 2→2 := sup<br />

2 (I)<br />

(∑ n<br />

≤<br />

y∈K n+1 \{0} ‖y‖ 2<br />

i=0 ‖L i‖ 2 )1<br />

2<br />

L 2 . (8.2.11)<br />

(I)<br />

✫<br />

Proof. (for the L ∞ -Norm)<br />

By △-inequality<br />

‖I T (y)‖ L ∞ (I) = ∥ ∥∥∥ ∑ n<br />

j=0 y jL j<br />

∥ ∥∥∥L ∞ (I)<br />

≤ sup<br />

t∈I<br />

∑ n<br />

j=0 |y j||L j (t)| ≤ ‖y‖ ∞<br />

∥ ∥∥ ∑ n<br />

i=0 |L i|∥<br />

∥ L ∞ (I) ,<br />

✩<br />

✪<br />

Ôº¾ º¾<br />

Between the nodes the interpolation polynomial can oscillate excessively and overestimate the changes<br />

in the values: bad approximation of functions!<br />

Interpolation polynomial with uniformly spaced<br />

nodes:<br />

See example 8.4.3.<br />

{ } n<br />

T := −5 + 10<br />

n j , j=0<br />

y j = 1<br />

1 + t 2 , j = 0, ... n.<br />

j<br />

Plot n = 10 ➙<br />

Interpolation polynomial<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Interpol. polynomial<br />

−0.5<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

t<br />

Ôº º¾

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!