21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0 20 40 60 80 100<br />

0<br />

20<br />

0<br />

20<br />

0<br />

20<br />

Definition 2.7.1 (Symmetric positive definite (s.p.d.) matrices).<br />

M ∈ K n,n , n ∈ N, is symmetric (Hermitian) positive definite (s.p.d.), if<br />

40<br />

40<br />

40<br />

M = M H ∧ x H Mx > 0 ⇔ x ≠ 0 .<br />

60<br />

60<br />

60<br />

If x H Mx ≥ 0 for all x ∈ K n ✄ M positive semi-definite.<br />

80<br />

80<br />

80<br />

100<br />

100<br />

100<br />

nz = 2580<br />

0 20 40 60 80 100<br />

0 20 40 60 80 100<br />

nz = 891<br />

nz = 1299<br />

no reordering<br />

reverse Cuthill-McKee approximate minimum degree ✸<br />

Advice: Use numerical libraries for solving LSE with sparse system matrices !<br />

✬<br />

Lemma 2.7.2 (Necessary conditions for s.p.d.).<br />

For a symmetric/Hermitian positive definite matrix M = M H ∈ K n,n holds true:<br />

1. m ii > 0, i = 1, ...,n,<br />

2. m ii m jj − |m ij | 2 > 0 ∀1 ≤ i < j ≤ n,<br />

3. all eigenvalues of M are positive. (← also sufficient for symmetric/Hermitian M)<br />

✫<br />

✩<br />

✪<br />

→ SuperLU (http://www.cs.berkeley.edu/~demmel/SuperLU.html)<br />

→ UMFPACK (http://www.cise.ufl.edu/research/sparse/umfpack/)<br />

→ Pardiso<br />

Ôº½ ¾º<br />

(http://www.pardiso-project.org/)<br />

→ Matlab-\ (on sparse storage formats)<br />

2.7 Stable Gaussian elimination without pivoting<br />

Remark 2.7.1 (S.p.d. Hessians).<br />

Recall from analysis: in a local minimum x ∗ of a C 2 -function f : R n ↦→ R ➤ Hessian D 2 f(x ∗ )<br />

s.p.d.<br />

Example 2.7.2 (S.p.d. matrices from nodal analysis). → Ex. 2.0.1<br />

△<br />

Ôº½ ¾º<br />

Thm. 2.6.6 ➣ special structure of the matrix helps avoid fill-in in Gaussian elimination/LU-factorization<br />

without pivoting.<br />

Consider:<br />

electrical circuit entirely composed of<br />

Ohmic resistors.<br />

U<br />

➀<br />

R 12 ➁ R 23 ➂<br />

~ R 24<br />

R 14<br />

R 25<br />

R 35<br />

Ex. 2.6.21 ➣ pivoting can trigger huge fill-in that would not occur without it.<br />

Ex. 2.6.30 ➣ fill-in reducing effect of reordering can be thwarted by later row swapping in the course<br />

of pivoting.<br />

Sect. 2.5.3: pivoting essential for stability of Gaussian elimination/LU-factorization<br />

Very desirable: a priori criteria, when Gaussian elimination/LU-factorization remains stable even<br />

without pivoting. This can help avoid the extra work for partial pivoting and makes it possible to<br />

exploit structure without worrying about stability.<br />

Ôº½ ¾º<br />

Circuit equations from nodal analysis, see<br />

Ex. 2.0.1:<br />

R45<br />

R 56<br />

➃ ➄ ➅<br />

➁ : R12 −1 (U 2 − U 1 ) + R23 −1 (U 2 − U 3 ) − R24 −1 (U 2 − U 4 ) + R25 −1 (U 2 − U 5 ) = 0 ,<br />

➂ :<br />

R23 −1 (U 3 − U 2 ) + R35 −1 (U 3 − U 5 ) = 0 ,<br />

➃ :<br />

R14 −1 (U 4 − U 1 ) − R24 −1 (U 4 − U 2 ) + R45 −1 (U 4 − U 5 ) = 0 ,<br />

➄ : R25 −1 (U 5 − U 2 ) + R35 −1 (U 5 − U 3 ) + R45 −1 (U 5 − U 4 ) + R 56 (U 5 − U 6 ) = 0 ,<br />

U 1 = U , U 6 = 0 .<br />

⎛<br />

1<br />

R + 12 R 1 + 23 R 1 + 24 R 1 − 25 R 1 − 23 R 1<br />

− 1 ⎞<br />

⎛ ⎞ ⎛ ⎞<br />

1<br />

24 R 25<br />

− R 1<br />

1<br />

23 R + 1<br />

23 R 0 − 1<br />

U 2 R 35 R 35<br />

⎜<br />

⎝ −R 1<br />

0 1<br />

24 R + 1<br />

24 R − 1<br />

⎜U 3<br />

12<br />

⎟<br />

⎟ ⎝<br />

45 R 45 ⎠<br />

U 4 ⎠ = 0<br />

⎜<br />

⎝<br />

1 ⎟<br />

−R 1<br />

− 1<br />

25 R − 1 1<br />

35 R 45 R + 1<br />

22 R + 1<br />

35 R + 1<br />

R ⎠ U<br />

14<br />

U 5 0<br />

45 R 56<br />

Ôº½¼ ¾º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!