21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.4 Interpolation Error Estimates<br />

Perspective<br />

approximation of a function by polynomial interpolation<br />

Remark 8.4.1 (Approximation by polynomials).<br />

? Is it always possible to approximate a continuous function by polynomials?<br />

By Thm. 8.4.2:<br />

∥<br />

∥f (k)∥ ∥ ∥L ≤ 1 , ‖f − p‖ L ∞ (I) ≤ 1<br />

∣ ∞ (I)<br />

(1 + n)! max ∣<br />

∣(t − 0)(t −<br />

t∈I<br />

n π)(t − 2π ∣∣<br />

n ) · · · · · (t − π)<br />

⇒<br />

∀k ∈ N 0<br />

≤ 1 ( π<br />

) n+1<br />

.<br />

n + 1 n<br />

➙ Uniform exponential convergence of the interpolation polynomials<br />

(It holds for every mesh of nodes T )<br />

̌ Yes! Recall the Weierstrass theorem:<br />

A continuous function f on the interval [a,b] ⊂ R can be uniformly approximated by<br />

polynomials.<br />

10 −2<br />

||f−p n<br />

|| ∞<br />

MATLAB-experiment:<br />

computation of the norms.<br />

10 0 n<br />

! But not by the interpolation on a fixed mesh [32, pag. 331]:<br />

Given a sequence of meshes of increasing size {T j } ∞ j=1 , T j = {x (j)<br />

1 ,...,x(j) j } ⊂ [a,b],<br />

a ≤ x (j)<br />

1 < x (j)<br />

2 < · · · < x (j)<br />

j ≤ b, there exists a continuous function f such that<br />

the sequence interpolating polynomials of f on T j does not converge uniformly to f as<br />

j → ∞.<br />

△<br />

Ôº½ º<br />

Error norm<br />

10 −4<br />

10 −6<br />

10 −8<br />

10 −10<br />

10 −12<br />

10 −14<br />

||f−p n<br />

|| 2<br />

Fig. 100<br />

2 4 6 8 10 12 14 16<br />

• L ∞ -norm: sampling on a grid of meshsize<br />

π/1000.<br />

• L 2 -norm: numeric quadrature (→ Chapter 10)<br />

with trapezoidal rule on a grid of meshsize<br />

π/1000.<br />

Ôº¿ º ✸<br />

We consider Lagrangian polynomial interpolation on node set<br />

Example 8.4.3 (Runge’s example).<br />

Notation:<br />

T := {t 0 ,...,t n } ⊂ I, I ⊂ R, interval of length |I|.<br />

For a continuous function f : I ↦→ K we define the polynomial interpolation operator,<br />

see Thm. 8.2.2<br />

Polynomial interpolation of f(t) = 1<br />

1+t2 with equispaced nodes:<br />

{ } n<br />

T := t j := −5 + 10<br />

n j , y j = 1<br />

j=0 1 + t 2 .j = 0, ...,n .<br />

j<br />

I T (f) := I T (y) ∈ P n with y := (f(t 0 ), ...,f(t n )) T ∈ K n+1 .<br />

2<br />

1/(1+x 2 )<br />

Interpolating polynomial<br />

1.5<br />

✗<br />

✖<br />

Goal: estimate of the interpolation error norm ‖f − I T f‖ (for some norm on C(I)).<br />

✔<br />

✕<br />

1<br />

0.5<br />

Focus:<br />

asymptotic behavior of interpolation error<br />

0<br />

Example 8.4.2 (Asymptotic behavior of polynomial interpolation error).<br />

Interpolation of f(t) = sint on equispaced nodes in I = [0, π]: T = {jπ/n} n j=0 .<br />

Interpolation polynomial p := I T f ∈ P n .<br />

Ôº¾ º<br />

−0.5<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

Fig. 101<br />

Interpolating polynomial, n = 10<br />

Ôº º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!