21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

f<br />

f<br />

• line 9: estimate for global error by summing up moduli of local error contributions,<br />

• line 10: terminate, once the estimated total error is below the relative or absolute error threshold,<br />

• line 13 otherwise, add midpoints of mesh intervals with large error contributions according to<br />

(10.6.3) to the mesh and continue.<br />

Example 10.6.3 (h-adaptive numerical quadrature).<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

quadrature errors<br />

10 0<br />

10 −1<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

exact error<br />

estimated error<br />

approximate<br />

∫1<br />

0<br />

exp(6 sin(2πt)) dt, initial mesh M 0 = {j/10} 10<br />

j=0<br />

0<br />

0<br />

5<br />

10<br />

quadrature level<br />

15<br />

1<br />

0.8<br />

0.6<br />

x<br />

0.4<br />

0<br />

0.2<br />

Fig. 120<br />

10 1 no. of quadrature points<br />

10 −6<br />

10 −7<br />

10 −8<br />

0 100 200 300 400 500 600 700 800<br />

Fig. 121<br />

Algorithm: adaptive quadrature, Code 10.6.1<br />

Observation:<br />

Tolerances: rtol = 10 −6 , abstol = 10 −10<br />

We monitor the distribution of quadrature points during the adaptive quadrature and the true and<br />

estimated quadrature errors. The “exact” value for the integral is computed by composite Simpson<br />

rule on an equidistant mesh with 10 7 intervals.<br />

Ôº½ ½¼º<br />

Adaptive quadrature locally decreases meshwidth where integrand features variations or kinks.<br />

Trend for estimated error mirrors behavior of true error.<br />

Overestimation may be due to taking the modulus in (10.6.1)<br />

However, the important information we want to glean from EST k is about the distribution of the<br />

quadrature error.<br />

Ôº½ ½¼º<br />

500<br />

10 0<br />

exact error<br />

estimated error<br />

✸<br />

450<br />

400<br />

350<br />

10 −1<br />

10 −2<br />

Remark 10.6.4 (Adaptive quadrature in MATLAB).<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

quadrature errors<br />

10 −3<br />

10 −4<br />

10 −5<br />

10 −6<br />

q = quad(fun,a,b,tol): adaptive multigrid quadrature<br />

(local low order quadrature formulas)<br />

q = quadl(fun,a,b,tol): adaptive Gauss-Lobatto quadrature<br />

△<br />

0<br />

0<br />

0<br />

5<br />

0.2<br />

0.4<br />

10<br />

0.6<br />

0.8<br />

15<br />

1<br />

x<br />

quadrature level<br />

Fig. 118<br />

∫1<br />

approximate min{exp(6 sin(2πt)), 100} dt,<br />

10 1 no. of quadrature points<br />

10 −7<br />

10 −8<br />

10 −9<br />

0 200 400 600 800 1000 1200 1400 1600<br />

initial mesh as above<br />

Fig. 119<br />

10.7 Multidimensional Quadrature<br />

0<br />

Ôº½ ½¼º<br />

Ôº¾¼ ½¼º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!