21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

⇒<br />

if y ∈ C 2 ([0, T]), then<br />

y(t k+1 ) − y(t k ) = ẏ(t k )h k + 1 2ÿ(ξ k)h 2 k for some t k ≤ ξ k ≤ t k+1<br />

= f(y(t k ))h k + 1 2ÿ(ξ k)h 2 k ,<br />

Total error arises from accumulation of one-step errors!<br />

since t ↦→ y(t) solves the ODE, which implies<br />

the one-step error from (11.3.4)<br />

τ(h k ,y(t k ))=Ψ h ky(t k ) − y(t k + h k )<br />

ẏ(t k ) = f(y(t k )). This leads to an expression for<br />

(11.3.2)<br />

= y(t k ) + h k f(y(t k )) − y(t k ) − f(y(t k ))h k + 2ÿ(ξ 1 k)h 2 (11.3.6)<br />

k<br />

= 1 2ÿ(ξ k)h 2 k .<br />

error bound = O(h), h := max h l (➤<br />

l<br />

1st-order algebraic convergence)<br />

Error bound grows exponentially with the length T of the integration interval.<br />

Most commonly used single step methods display algebraic convergence of integer order with respect<br />

to the meshwidth h := max k h k . This offers a criterion for gauging their quality.<br />

Sloppily speaking, we observe τ(h k ,y(t k )) = O(h 2 k ) uniformly for h k → 0.<br />

The sequence (y k ) k generated by a<br />

➂ Estimate for the propagated error from (11.3.3)<br />

∥<br />

∥Ψ h ky k − Ψ h ky(t k ) ∥ = ‖y k + h k f(y k ) − y(t k ) − h k f(y(t k ))‖<br />

(11.3.1)<br />

≤ (1 + Lh k ) ‖y k − y(t k )‖ .<br />

(11.3.7)<br />

Ôº ½½º¿<br />

single step method (→ Def. 11.2.1) of order (of consistency) p ∈ N<br />

for ẏ = f(t,y) on a mesh M := {t 0 < t 1 < · · · < t N = T } satisfies<br />

max<br />

k ‖y k − y(t k )‖ ≤ Ch p for h := max<br />

k=1,...,N |t k − t k−1 | → 0 ,<br />

with C > 0 independent of M, provided that f is sufficiently smooth.<br />

Ôº ½½º<br />

➂ Recursion for error norms ǫ k := ‖e k ‖ by △-inequality:<br />

11.4 Runge-Kutta methods<br />

ǫ k+1 ≤ (1 + h k L)ǫ k + ρ k , ρ k := 2 1h2 k max ‖ÿ(τ)‖ . (11.3.8)<br />

t k ≤τ≤t k+1<br />

Taking into account ǫ 0 = 0 this leads to<br />

Use the elementary estimate<br />

ǫ k ≤<br />

k∑ l−1 ∏<br />

(1 + Lh j ) ρ l , k = 1, ...,N . (11.3.9)<br />

l=1 j=1<br />

(1 + Lh j ) ≤ exp(Lh j ) (by convexity of exponential function):<br />

So far we only know first order methods, the explicit and implicit Euler method (11.2.1) and (11.2.4),<br />

respectively.<br />

Now we will build a class of methods that achieve orders > 1. The starting point is a simple integral<br />

equation satisfied by solutions of initial value problems:<br />

Note:<br />

(11.3.9) ⇒ ǫ k ≤<br />

l−1 ∑<br />

h j ≤ T for final time T<br />

j=1<br />

k∑ l−1 ∏<br />

exp(Lh j ) · ρ l =<br />

l=1 j=1<br />

k∑<br />

l=1<br />

exp(L ∑ l−1<br />

j=1 h j)ρ l .<br />

IVP:<br />

∫<br />

ẏ(t) = f(t,y(t)) ,<br />

t1<br />

⇒ y(t 1 ) = y 0 + f(τ,y(τ)) dτ<br />

y(t 0 ) = y 0 t 0<br />

k∑<br />

ρ<br />

k∑<br />

ǫ k ≤ exp(LT) ρ l ≤ exp(LT) max k<br />

h<br />

k h l<br />

l=1<br />

k<br />

l=1<br />

≤ T exp(LT) max h l · max ‖ÿ(τ)‖ .<br />

l=1,...,k t 0 ≤τ≤t k<br />

‖y k − y(t k )‖ ≤ T exp(LT) max h l · max ‖ÿ(τ)‖ .<br />

l=1,...,k t 0 ≤τ≤t k<br />

Ôº ½½º¿<br />

Idea: approximate integral by means of s-point quadrature formula (→ Sect. 10.1,<br />

defined on reference interval [0, 1]) with nodes c 1 ,...,c s , weights b 1 ,...,b s .<br />

s∑<br />

y(t 1 ) ≈ y 1 = y 0 + h b i f(t 0 + c i h, y(t 0 + c i h) ) , h := t 1 − t 0 . (11.4.1)<br />

i=1<br />

Obtain these values by bootstrapping<br />

Ôº¼ ½½º

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!