21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0<br />

0<br />

: diagonal<br />

2<br />

2<br />

4<br />

4<br />

m<br />

: super-diagonals<br />

6<br />

6<br />

: sub-diagonals<br />

8<br />

8<br />

n<br />

✁ m(A) = 2, m(A) = 1<br />

10<br />

12<br />

14<br />

10<br />

12<br />

14<br />

for banded matrix A ∈ K m,n :<br />

nnz(A) ≤ min{m, n}m(A)<br />

16<br />

18<br />

16<br />

18<br />

MATLAB function for creating banded matrices:<br />

dense matrix : X=diag(v);<br />

sparse matrix : X=spdiags(B,d,m,n); (sparse storage !)<br />

tridiagonal matrix : X=gallery(’tridiag’,c,d,e); (sparse storage !)<br />

We now examine a generalization of the concept of a banded matrix that is particularly useful in the<br />

context of Gaussian elimination:<br />

Ôº½ ¾º<br />

20<br />

0 2 4 6 8 10 12 14 16 18 20<br />

nz = 138 Fig. 17<br />

20<br />

0 2 4 6 8 10 12 14 16 18 20<br />

nz = 121 Fig. 18<br />

Note: the envelope of the arrow matrix from Ex. 2.6.13 is just the set of index pairs of its non-zero<br />

entries. Hence, the following theorem provides another reason for the sparsity of the LU-factors in<br />

that example.<br />

Ôº½ ¾º<br />

✸<br />

✬<br />

✩<br />

Definition 2.6.5 (Matrix envelope (ger.: Hülle)).<br />

For A ∈ K n,n define<br />

row bandwidth<br />

column bandwidth<br />

envelope env(A) :=<br />

Example 2.6.23 (Envelope of a matrix).<br />

⎛<br />

⎞<br />

∗ 0 ∗ 0 0 0 0<br />

0 ∗ 0 0 ∗ 0 0<br />

∗ 0 ∗ 0 0 0 ∗<br />

A =<br />

0 0 0 ∗ ∗ 0 ∗<br />

⎜<br />

0 ∗ 0 ∗ ∗ ∗ 0<br />

⎟<br />

⎝ 0 0 0 0 ∗ ∗ 0 ⎠<br />

0 0 ∗ ∗ 0 0 ∗<br />

m R i (A) := max{0, i − j : a ij ≠ 0, 1 ≤ j ≤ n},i ∈ {1, ...,n}<br />

m C j (A) := max{0,j − i : a ij ≠ 0, 1 ≤ i ≤ n},j ∈ {1, ...,n}<br />

{<br />

}<br />

(i,j) ∈ {1,...,n} 2 i − m R : i (A) ≤ j ≤ i ,<br />

j − m C j (A) ≤ i ≤ j<br />

m R 1 (A) = 0<br />

m R 2 (A) = 0<br />

m R 3 (A) = 2<br />

m R 4 (A) = 0<br />

m R 5 (A) = 3<br />

m R 6 (A) = 1<br />

m R 7 (A) = 4<br />

env(A) = red elements<br />

∗ ˆ= non-zero matrix entry a ij ≠ 0<br />

Ôº½ ¾º<br />

Theorem 2.6.6 (Envelope and fill-in).<br />

If A ∈ K n,n is regular with LU-decomposition A = LU, then fill-in (→ Def. 2.6.3) is confined<br />

to<br />

✫<br />

env(A).<br />

Proof. (by induction, version I) Examine first step of Gaussian elimination without pivoting, a 11 ≠ 0<br />

(<br />

a11 b<br />

A =<br />

T ) ( )( 1 0 a11 b T )<br />

=<br />

c à −a c I<br />

} {{ 11 0 Ã −<br />

}<br />

cbT<br />

a<br />

} {{ 11<br />

}<br />

L (1) { U (1)<br />

ci−1 = 0 , if i > j ,<br />

If (i, j) ∉ env(A) ⇒<br />

b j−1 = 0 , if i < j .<br />

Moreover, env(Ã − cbT<br />

a 11<br />

) = env(A(2 : n, 2 : n))<br />

⇒ env(L (1) ) ⊂ env(A), env(U (1) ) ⊂ env(A) .<br />

Proof. (by induction, version II) Use block-LU-factorization, cf. Rem. 2.2.8 and proof of<br />

Lemma 2.2.3:<br />

( ) ( )(<br />

à b ˜L 0 Ũ u<br />

Ôº½ ¾º<br />

)<br />

c T =<br />

α l T ⇒ ŨT l = c ,<br />

(2.6.3)<br />

1 0 ξ ˜Lu = b .<br />

✪<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!