21.06.2014 Views

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

Numerical Methods Contents - SAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Shorthand notation for Runge-Kutta methods<br />

Butcher scheme<br />

Note: now A can be a general s × s-matrix.<br />

✄<br />

c A<br />

b T :=<br />

c 1 a 11 · · · a 1s<br />

. . .<br />

. (12.3.3)<br />

c s a s1 · · · a ss<br />

b 1 · · · b s<br />

A strict lower triangular matrix ➤ explicit Runge-Kutta method, Def. 11.4.1<br />

A lower triangular matrix ➤ diagonally-implicit Runge-Kutta method (DIRK)<br />

Definition 12.3.3 (L-stable Runge-Kutta method).<br />

A Runge-Kutta method (→ Def. 12.3.1) is L-stable/asymptotically stable, if its stability function<br />

(→ Def. 12.3.2) satisfies<br />

(i) Re z < 0 ⇒ |S(z)| < 1 , (12.3.5)<br />

(ii)<br />

lim S(z) = 0 . (12.3.6)<br />

Rez→−∞<br />

Remark 12.3.3 (Necessary condition for L-stability of Runge-Kutta methods).<br />

Model problem analysis for general Runge-Kutta single step methods (→ Def. 12.3.1): exactly the<br />

same as for explicit RK-methods, see (12.1.6), (12.1.7)!<br />

Consider:<br />

Assume:<br />

Runge-Kutta method (→ Def. 12.3.1) with Butcher scheme c A b T<br />

A ∈ R s,s is regular<br />

Ôº¾ ½¾º¿<br />

For a rational function S(z) = P(z) the limit for |z| → ∞ exists and can easily be expressed by the<br />

Q(z)<br />

leading coefficients of the polynomials P and Q:<br />

Ôº¿½ ½¾º¿<br />

If b T = (A) T :,j (row of A) ⇒ S(−∞) = 0 . (12.3.8)<br />

Thm. 12.3.2 ⇒ S(−∞) = 1 − b T A −1 1 . (12.3.7)<br />

✬<br />

✩<br />

Theorem 12.3.2 (Stability function of Runge-Kutta methods).<br />

The discrete evolution Ψ h λ<br />

of an s-stage Runge-Kutta single step method (→ Def. 12.3.1) with<br />

Butcher scheme c A bT (see (12.3.3)) for the ODE ẏ = λy is a multiplication operator according<br />

to<br />

Ψ h λ = 1 + zbT (I − zA) −1 1<br />

} {{ }<br />

stability function S(z)<br />

✫<br />

= det(I − zA + z1bT )<br />

det(I − zA)<br />

, z := λh , 1 = (1, ...,1) T ∈ R s .<br />

✪<br />

Butcher scheme (12.3.3) for L-stable<br />

✄ c A RK-methods, see Def. 12.3.3<br />

b T :=<br />

Example 12.3.4 (L-stable implicit Runge-Kutta methods).<br />

c 1 a 11 · · · a 1s<br />

. .<br />

.<br />

c s−1 a s−1,1 · · · a s−1,s .<br />

b 1 · · · b s<br />

1 b 1 · · · b s<br />

△<br />

Note: from the determinant represenation of S(z) we infer that the stability function of an s-stage<br />

Runge-Kutta method is a rational function of the form S(z) = P(z)<br />

Q(z) with P ∈ P s, Q ∈ P s .<br />

Of course, such rational functions can satisfy |S(z)| < 1 for all z < 0. For example, the stability<br />

function of the implicit Euler method (11.2.4) is<br />

1 1<br />

1<br />

Thm. 12.3.2<br />

⇒ S(z) = 1<br />

1 − z . (12.3.4)<br />

1 1<br />

1<br />

1 5<br />

3 12 −12<br />

1<br />

1 3 1<br />

4 4<br />

3 1<br />

4 4<br />

4− √ 6 88−7 √ 6 296−169 √ 6 −2+3 √ 6<br />

10 360 1800 225<br />

4+ √ 6 296+169 √ 6 88+7 √ 6 −2−3 √ 6<br />

10 1800 360 225<br />

16− √ 6 16+ √ 6<br />

1<br />

1<br />

36 36 9<br />

16− √ 6 16+ √ 6 1<br />

36 36 9<br />

Implicit Euler method Radau RK-SSM, order 3 Radau RK-SSM, order 5<br />

✸<br />

In light of the previous detailed analysis we can now state what we expect from the stability function<br />

of a Runge-Kutta method that is suitable for stiff IVP (→ Notion 12.2.1):<br />

Ôº¿¼ ½¾º¿<br />

Equations fixing increments k i ∈ R d , i = 1, ...,s, for s-stage implicit RK-method<br />

=<br />

(Non-)linear system of equations with s · d unknowns<br />

Ôº¿¾ ½¾º¿

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!